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1 Introduction

In many cities population groups are sorted into distinct spatial neighborhoods. Many US

metropolitan areas have a China town, a little Italy, or other ethnic enclaves which host

significantly higher concentrations of ethnic or cultural groups. Such enclaves may range

from a single block to areas of a few square miles. For most observers, the main reason

for such spatial segregation lies in the economic ties and social interactions that people

have with individuals of their reference group. The prevalence of such a segregation is

exacerbated by poverty as poor people are more likely to see their economic prospects and

social relationships improved within their own ethnic group. Spatial concentration also

affects business and professional activities. The financial, retailing and manufacturing

sectors often locate their economic activity in separate industrial areas. For instance, in

Los Angeles, distinct neighborhoods host the movie, finance, fashion, and art industries.

For many urban economists, such industrial concentration is partly explained by the

stronger spillover that firms benefit from other firms active in the same industry.

The present paper aims at improving our understanding of spatial segregation and

concentration as resulting from the emergence of endogenous urban districts. We study

a one-dimensional city where agents engage in intra- and inter-group social interactions,

choosing their land consumption, as well as their location. Agents are heterogeneous

in the sense that each of them belongs to one of two distinct populations. Intra-group

interactions are more frequent than inter-group interactions: agents interact more often

with agents of their own population than with agents of the other group. Such preferential

interactions reflect stronger relationships between individuals sharing a common culture,

language, or ethnicity. They may also reflect professional relationships between group

members sharing the same economic activity (e.g., bankers, lawyers, or designers) or

economic status (e.g. employed or unemployed workers). We assume that populations are

symmetric in terms of their benefit from intra- and inter-group interactions: the intensity

of intra-group and inter-group social interactions is the same for both populations. Our

model does not rely on the exogenous existence of a city center (Alonso, 1964). Instead,
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as in Beckmann (1976), each agent visits other agents so as to benefit from a face-to-face

contacts, each trip involving a cost which is proportional to distance. In equilibrium, the

benefit from social interactions balances the residence and the access cost. The main issue

in this paper is about whether social interactions lead to spatial segregation and how these

interactions structure urban neighborhoods. Though segregation is a common result in

land market models in the urban literature, our paper constitutes the first attempt to

deal with the issue without assuming the exogenous existence of a central place.

Our results are the following. First, we show that integration never is a spatial equi-

librium. Both populations never cluster in an integrated city. This result is due to the

agents’higher return from interacting with individuals of their own group. Given this,

agents have an incentive to relocate close to agents of their own population, so as to meet

more frequently, and therefore to save on trip costs.

Second, we analyze spatial structures involving segregation in two or three urban

districts. In a two-district city, populations separate in two neighboring districts. In a

three-district city, one population locates in the city center while the other one resides in

the two city edges. We show that both cases are possible.

The two-district city is a spatial equilibrium if populations have similar sizes or if inter-

group interactions are weak. In this case, the large population occupies a large central

urban district repelling the small population towards a city edge. The small population

accommodates such a situation as its interactions with the large group are weak, making

the incentive to relocate close to the large population´s district not suffi ciently high. In

contrast, when the small population has stronger interactions with the large group, some

of its individuals have an incentive to relocate to the opposite city edge, where the large

population resides, so as to benefit from cheaper land rents and from a better accessibility

to the large group. The two-district then ceases to be a spatial equilibrium. Interestingly,

the two-district city can display one or two subcenters. When inter-group interactions

are weak, two subcenters arise. As intra-group interactions dominate, a separate basin of

attraction arises for each population. On the other hand, when one population is much
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larger than the other one, the city has a single subcenter as the large population’s district

also constitutes a basin of attraction for the small group.

The three-district city is always a spatial equilibrium when the large population locates

in the central district. In this case, the large population occupies the city area where it

benefits most from closer interactions though facing high land rents. The small population

benefits from lower land prices at the expense of a lower accessibility to agents of its own

group. The city is shown to exhibit a single subcenter occupied by the large population,

which constitutes a large basin of attraction for both groups. In contrast, when the

small population locates in the central district, we show that the three-district city may

not always be sustained as a spatial equilibrium. This is the case only if population

sizes are suffi ciently similar or if inter-group interactions are weak. The existence of

this equilibrium configuration stems from a coordination problem. Although the large

population as a whole would benefit from occupying the city center, no individual agent

has an incentive to relocate in the central district as he would face an excessive residence

cost and lose access to individuals of his own group which are located in the city edges.

Third, we show that multiple equilibria may arise. Depending on the model para-

meters, various urban structures can coexist. The economy exhibits one, two, or three

spatial equilibria. The more similar the population sizes, and the weaker the inter-group

interactions, the more likely several equilibria to emerge. For high population ratios or

strong inter-group interactions, only the three-district city with the large group occupying

the central district exists. In other cases, multiplicity of equilibria arises. When several

spatial configurations are possible, spatial equilibria can be ranked in terms of the utility

derived by each population. A welfare analysis shows that for suffi ciently low popula-

tion ratios or very weak inter-group interactions, all individuals agree on which spatial

equilibrium is best.

Our model suggests urban patterns that can be found for various language, racial

or ethnic groups. For instance, the Island of Montreal in Canada presents a East-West

division of the French- and the English-speaking communities. A similar North-South
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divide can be observed in the city of Brussels in Belgium between the Dutch- and the

French-speaking communities. While the city of Paris accommodates most of the foreign

ethnic groups away from the city center, US cities like New-York or Detroit host several

small ethnic and racial groups around the city center. Spatial segregation can also have

religious grounds. In the city of Belfast, the West and the East sides of the city are mostly

inhabited by Catholics and Protestants respectively. In general, the spatial clustering of

people in cities may be influenced by several other personal attributes, ranging from

professional activities to sexual habits. The paper focuses on the spatial sorting of two

communities differing in one such characteristic.

Our model helps understanding how city growth may affect urban structures. Given

the multiplicity of equilibria, city growth may induce spontaneous transitions from one

urban structure to another. So, the spatial structure of cities depends on history. Over

time, old cities like Paris have undergone several transitions and are now locked in a

configuration with the large (native) population in the city center. In contrast, younger

US cities like New York or Detroit may not have undergone such transitions and display

an urban configuration with the minority group in the city center.

Our model also sheds some light on the impact of social integration programs on

urban structures. Interpreting the frequency of inter-group interactions as an indicator

of social integration, our model provides some interesting insights. Spatial integration

should not be considered as an indicator of effi ciency of social integration programs. In

many instances, social integration programs may be ineffective in reshaping the urban

landscape. Moreover, social integration may even fragment spatially the minority group.

The paper relates to the literature in several respects. Beckmann (1976), Fujita and

Thisse (2004), and Mossay and Picard (2011) have studied how non-market interactions

can shape urban structures by studying social interactions in a land market model with-

out assuming the pre-existence of an urban center to which residents commute. Fujita

and Ogawa (1982) and Lucas and Rossi-Hansberg (2002) have analyzed how market in-

teractions can shape the city structure by including firms and workers. Here, multiple
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equilibria along the line segment are due to the introduction of inter-group interactions

as opposed to the corresponding single group model. Simple closed-form solutions are

obtained for two- and three-district urban structures. This allows us to characterize and

compare the equilibrium configurations, as well as to provide a rationale for these results.

Our analysis therefore provides additional theoretical insights regarding the formation of

multicentered cities as surveyed in Anas et al. (1998).

As in Schelling (1971), individual location choices lead to spatial segregation patterns.

While the dynamics in Schelling´s model is driven by individual preferences for the neigh-

borhood composition, spatial segregation in our model arises although no individual agent

prefers or promotes this spatial outcome. Here, segregation hinges on the discrepancies

of social interactions that individuals have in the whole city and on competition in the

land market. So, our model reconciles Beckmann’s urban land market with Schelling’s

idea of segregation. As in our paper, Kanemoto (1980, Chapter 6) studies the selection

of spatial neighborhoods by two groups of households. He considers a monocentric city

where the poor group imposes a negative externality on the rich group. In contrast to this,

we do not assume the pre-existence of the city center and analyse the case of reciprocal

segregation, where each population is affected by the location decisions of individuals of

the other group. Moreover, our model may display three-district configurations, which do

not arise in Kanemoto’s work.

Glaeser et al. (2000) have stressed the important role of social interactions in the

formation of cities. While we address social interactions in an explicit spatial framework,

de Marti and Zenou (2012) study similar segregation issues arising in social networks. As

in their paper, we focus on intra- and inter-group social interactions between two groups

of individuals. The intra- and inter-group interactions can be interpreted as strong and

weak ties in the sense of Granovetter (1973). While de Marti and Zenou address various

social aspects (e.g. assimilation or oppositional identities), we study a land market model

with spatial interactions. In our model, the access cost is assumed to be small enough so

that each agent has an incentive to interact with all other agents distributed along the
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line segment. This means that according to the terminology of de Marti and Zenou, our

economy always displays complete integration (e.g. each group is fully intra-connected

and both groups are fully inter-connected). However, here, in contrast to de Marti and

Zenou, the issue is not about whether an individual will maintain a social link with other

individuals, nor it is about the impact of the geometry of the social network. Rather,

we are interested in how location choices of individuals affect the structure of spatial

neighborhoods.1

This paper is organized as follows. Section 2 describes the model. Section 3 studies

the urban structure with integrated populations. Section 4 analyzes spatial segregation

in two and three districts. Section 5 concludes.

2 The Model

We assume a linear city with a unit width which spreads over the interval B ≡ [−b, b] and

hosts two populations of agents P1 > P2. The density of agents of population i residing

at location x is denoted by the function λi(x) : B → R+, i = 1, 2. Each individual enjoys

the same unitary benefit when interacting socially with another agent while incurring

an access cost τ associated with the return trip to visit that agent. However, because

of cultural differences or language barriers, social interactions are more frequent among

individuals of a same group. While agents meet each agent of their own population with

a frequency normalized to one, they meet each agent of the other group with a lower

frequency 0 < α < 1. So the social utility derived by an agent of population i can be

written as

Si(x) =

∫
B

(1− τ |x− y|)λi(y)dy + α

∫
B

(1− τ |x− y|)λj(y)dy , i 6= j

where the first term (resp. the second term) reflects the net benefit from intra-group

interactions (resp. inter-group interactions) with |x− y| denoting the Euclidian distance
1Note that the model by Hesley and Zenou (2012) addresses both location choices and endogenous

network formation. However, it does not focus on segregation issues.
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between locations x and y. The surplus S(x) can also be interpreted in a context of

uncertainty. In that case, it corresponds to the expected utility of an agent who plans to

interact with a subset of agents whom location and identity are not known at the time

of the residence choice. Such an interpretation applies to individuals moving to an urban

area with no a priori acquaintances. This could also apply to the case of shopkeepers,

sellers, as well as workers who expect to hold several jobs at different locations during their

lifetime, or employers who do not have a precise idea about future workers’residences.

Agents maximize the utility they derive from consumption and social interactions

Ui (s, z;x) = Si(x)− β

2s
+ z

subject to their budget constraint

z +R(x)s = Y

where s and z are the consumption of land and of the composite good, R(x) the land rent

at location x, Y the agent’s income2, and β the preference parameter for land consumption.

For the sake of simplicity, we assume that land has no alternate use, so that R(x) = 0 in

uninhabited locations. In the above functional form of utility, we consider an hyperbolic

preference for land instead of the logarithmic preference used in Beckmann (1976) and

Fujita and Thisse (2002, Chapter 6). The present hyperbolic preference represents an

intermediate case between Beckmann’s demand and the inelastic demand for space that

is regularly used in standard urban economics.3

Since Alonso (1964) and Fujita (1989), the urban economic literature has regularly

relied on the bid rent approach to determine the spatial equilibrium. Because agents are

free to relocate anywhere along the geographical space, the absence of locational arbitrage

requires that the utility level of agents of a same population remains constant across all

2Y can also be interpreted as the valuation of the endowment in the composite good.
3The hyperbolic and logarithmic preferences for residential space are two particular instances of the

same class of preferences s1−ρ/ (1− ρ) where ρ = 2 and ρ → 1 respectively, which yield iso-elastic

demands for residential space with price elasticities equal to 1/2 and 1 respectively.
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locations inhabited by this population. The agent’s bid rent ψi in location x is defined as

the maximum rent that an agent is willing to pay for residing in x

ψi(x) = max
s

Y − z
s

s.t. Ui (s, z;x) ≥ ui i = 1, 2

for some given utility level ui.

Let ẑi(x, ui) and ŝi(x, ui) denote the bid-maximizing consumption of land and of the

composite good for an individual of population i residing in x. By using the agent’s

budget constraint, the bid rent ψi(x) can be written as

ψi(x) = max
s

Y − ui + Si − β/(2s)
s

= max
s

(
Y − ui + Si

s
− β

2s2

)
The optimal consumption of space corresponds to

ŝi(x, ui) =
β

Y − ui + Si

which yields the following bid rent:

ψi(x) =
(Y − ui + Si)

2

2β
=

β

2ŝi2
(1)

A competitive spatial equilibrium is then defined by spatial distributions of consump-

tion {zi(x), si(x)}, land rent R(x), agents λi(x), and utility levels ui which

(i) maximize each population’s bid rent (zi(x) = ẑi(x, ui) and si(x) = ŝi(x, ui)),

(ii) allocate land to the highest bid (R(x) = maxi[ψi(x), 0] so that R(x) = ψi(x) if

λi(x) > 0, and R(x) = 0 if λi(x) = 0,∀i),

(iii) satisfy the land market equilibrium,
∑

i λi(x)si(x) = 1, and

(iv) meet the total population constraint
∫ b
−b λi(x)dx = Pi.
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3 Integrated populations

In this section, we investigate the existence of integrated districts where both popula-

tion groups live together. Integrated urban structures are often advocated in the urban

planning literature; they are also shown to result from the balance between dispersion

and agglomeration forces in the urban economic literature (see e.g. Fujita (1989), Fujita

and Ogawa (1982), or Lucas and Rossi-Hansberg (2002)). It turns out that our model

of social interactions does not support spatial equilibria with integrated populations. We

show below that this is because agents always have an incentive to relocate close to other

agents of their own group so as to meet more frequently.

Suppose that the two populations are integrated in some interval so that λ1(x) > 0 and

λ2(x) > 0 for all x in that interval. For this configuration to constitute an equilibrium,

land should be allocated to both populations. Hence, by equilibrium condition (ii), the

bid rents of both populations must be equal: ψ1(x) = ψ2(x). By expression (1), this

implies that land consumption should also be equal

s1(x) = s2(x) ≡ s(x)

Agents have an identical use of space because their benefit from social interactions and

their preference for space are the same across both populations. As the land market

equilibrium (iii) implies that s(x) = [λ1(x) + λ2(x)]−1, the agent’s utility becomes Ui =

Si(x) + Y − β [λ1(x) + λ2(x)] . The spatial gradient of utility is then given by

U ′i(x) = τ [P+i (x)− P−i (x)] + ατ [P+j (x)− P−j (x)]− β
(
λ′i(x) + λ′j(x)

)
, i 6= j = 1, 2 (2)

where

P+i (x) =

∫ b

x

λi(y)dy and P−i (x) =

∫ x

−b
λi(y)dy = Pi − P+i (x)

denote the agents of population i to the right and to the left of location x. Clearly,

P+i (x) (resp. P−i (x)) is a decreasing (resp. increasing) continuous function. A necessary

condition for spatial equilibrium is that the utility of agents remains constant across
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inhabited areas (U ′1(x) = U ′2(x) = 0). By using expressions (2) and solving for (P+i −

P−i )(x), we get

P+1 (x)− P−1 (x) = P+2 (x)− P−2 (x) =
β

τ

λ′1(x) + λ′2(x)

1 + α
(3)

In equilibrium, both types of agents should have the same access to agents of their own

group. Any difference in population access reflects a change of benefit from social inter-

actions which translates itself into a change of bid rent. If the bid rent gradients were to

differ, then one population would be able to overbid the other one. A direct implication

of this reasoning is that population densities should be identical in an integrated area, so

that λ1(x) = λ2(x). This result has two following consequences.

First, at equilibrium, an integrated district must be interior to the city support. In

other words, no city border can be part of an integrated district. This is because at the

city border x = b, the first equality in condition (3) simplifies to −P1 = −P2, which is

impossible given that population sizes are different. Intuitively, as an integrated district

located at the city edge should host the same share of each population, the rest of the

city should consequently host a larger share of the large population. This will inevitably

induce relocations of individuals of the large group living at city edges to locations where

the access cost to the large group is lower.

Second, at equilibrium, only a single integrated district can exist. Stated differently,

the city cannot include two integrated districts that are separated by an area hosting a

single population or no population at all. On the one hand, interactions are more valuable

within a district hosting a single population because agents benefit there from more intra-

group interactions. This attracts other agents of the same population living in neighboring

integrated districts. On the other hand, the presence of an uninhabited area within the

city increases the access cost to agents, and as land is priced at its zero opportunity cost,

agents have an incentive to relocate to a border of that inhabited area. This provides

them with cheap land and agood access to their own population. The formal argument

is provided in the proof of the following Lemma.
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Lemma 1 Population integration can only arise in a single interior district.

Proof. (i) Consider two integrated areas which are separated by a segregated district

[x1, x2] hosting a mass m > 0 of agents of population 1. We have P+1 (x1)− P+1 (x2) = m

and P−1 (x1)−P−1 (x2) = −m while P+2 (x1)−P+2 (x2) = P−2 (x1)−P−2 (x2) = 0. Then, tak-

ing the difference between conditions (3) evaluated at x = x1 and x = x2 yields 2m = 0,

which is a contradiction. Of course, the argument also holds for a segregated area hosting

population 2.

(ii) Consider an uninhabited area (x1, x2) and two adjacent districts with integrated pop-

ulations. Given that land has a zero opportunity cost outside inhabited areas, we have

that ψi(x1) = ψi(x2) = 0. At the borders of the empty district, population densities

are equal to zero and population imbalances are identical so that λ1(x1) + λ2(x1) =

λ1(x2) + λ2(x2) = 0 and P+i (x1) − P−i (x1) = P+i (x2) − P−i (x2), ∀i. The latter condition

and condition (3) imply that the gradients of population densities are identical at the

borders: λ′1(x1) + λ′2(x1) = λ′1(x2) + λ′2(x2). By differentiating condition (3) with respect

to x, the gradient λ′1(x+ λ′2(x) can be shown to be a decreasing function. As the density

λ1(x)+λ2(x) cannot simultaneously fall to zero at x1 and rise from zero at x2, this proves

the absence of empty hinterlands in equilibrium.

Lemma 1 implies that integrated populations can only reside in a district surrounded

by segregated districts. However, this turns out to be impossible for the following reason.

When populations differ in size, imbalances in population access provide the individuals

of some population with an incentive to relocate away from the integrated district towards

the segregated one. So as to establish this result, we first present general properties about

utility levels when both populations segregate in distinct districts. These results will also

be of use in Section 4.

Suppose some segregated district [x1, x2] where λi(x) > 0 and λj(x) = 0, i 6= j = 1, 2.

We determine the utility and the density of the population residing within this district,

as well as the utility level that other agents would obtain by relocating into this district.
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On the one hand, the agents residing in this district have a utility level given by

Ui = Si(x) + Y − β

si
= Si(x) + Y − βλi

where the last term includes the density of population i only. The utility gradient is given

by

U ′i(x) = τ [P+i (x)− P−i (x)] + ατ [P+j (x)− P−j (x)]− βλ′i(x) = 0 (4)

so that the population gradient can be written as

λ′i(x) =
τ

β

{
[P+i (x) + αP+j (x)]− [P−i (x) + αP−j (x)]

}
(5)

Population densities and land rents fall when less population can be accessed to. In

equilibrium, the marginal residence cost βλ́i equates the sum of the marginal access

costs to individuals of her own group τ(P+i − P−i ) and to individuals of the other group

ατ(P+j − P−j ). The frequency of interaction α discounts inter-group interactions as they

are less frequent than intra-group ones.

On the other hand, consider an agent of population j who does not reside in the

segregated district [x1, x2]. When considering relocating to location x ∈ [x1, x2], she

will maximize her utility Uj = Sj(x) − β/ (2sj) + zj subject to her budget constraint

zj +R(x)sj = Y , where the equilibrium land rent, R(x), is equal to the highest bid made

by population i, ψi(x) = β/ [2si(x)2]. Given that λi(x) = 1/si(x) and sj(x) = si(x), agent

j’s utility becomes

Uj (x) = Sj(x)− βλi(x) + Y , x ∈ [x1, x2]

This expression reflects her social interactions (first term) and her use of space that

diminishes with the density of population i (second term). Differentiating this expression

and using the expression of the population gradient (5) gives

U ′j(x) = τ (1− α)
{

[P+j (x)− P−j (x)]− [P+i (x)− P−i (x)]
}

(6)

In the above expression, population imbalances reflects the trade-off between population

access and land prices. Agent j’s utility increases as she relocates to the right in the
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segregated district (U ′j(x) > 0) because she gets a better access to her own population

(P+j (x)− P−j (x) > 0). Her utility also increases when the access to the other population

i worsens (P+i (x)− P−i (x) < 0) as this reduces the equilibrium land rent.

We now show that an integrated district surrounded by segregated districts cannot be

sustained in equilibrium. Consider some integrated district [x1, x2] hosting both popula-

tions as well as two neighboring segregated districts. Consider some location x > x2 in

the segregated right-district. Let denote the mass of population 1 between locations x2

and x by n(x) ≡
∫ x
x2
λ1(x) > 0. For this configuration to constitute an equilibrium, it is

necessary that U2(x2)− U2(x) > 0. By using the utility gradient (6), we successively get

U ′2(x) = τ (1− α)
{

[P+2 (x)− P−2 (x)]− [P+1 (x)− P−1 (x)]
}

= τ (1− α)
{

[P+2 (x2)− P−2 (x2)]− [
(
P+1 (x2)− n(x)

)
−
(
P−1 (x2) + n(x)

)
]
}

Given condition (3) in the integrated area (x1, x2), the above expression simplifies to

U ′2(x) = 2τ (1− α)n(x) > 0. As a result, U2(x) − U2(x2) =
∫ x
x2
U ′2(z)dz = 2τ (1− α)∫ x

x2
n(z)dz > 0 meaning that this city configuration cannot be sustained in equilibrium.

An analogous argument applies when population 2 lives in the segregated district. This

reasoning leads to the following Proposition.

Proposition 2 No city includes an integrated district.

Proposition 2 results from the fact intra-group interactions are more frequent than

inter-group ones. At any equilibrium land price, agents have an incentive to relocate

close to agents of their own population so as to lower their access cost. Our analysis

shows that integrated residential patterns are inherently unstable as individuals have an

incentive to relocate closer to their own group. In contrast to Schelling´s paradigm, spatial

segregation does not stem from explicit preferences for the neighborhood composition.

Spatial segregation hinges on the discrepancies in social interactions and competition in

the land market. This sets the stage for the next questions: how do segregation patterns

arise and how do spatial neighborhoods form? We now turn to the analysis of cities with

segregated populations.
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4 Segregated populations

According to the analysis of the previous section, cities must structure into a set of

segregated districts, each of them hosting a single population. In each district, individuals

favor intra- over inter-group interactions as they have a closer access to agents of their

own group while having a more remote access to agents of the other group. As we will

show below in this section, a population may well spread into several districts, in which

case, agents lose access even to agents of their own group.

We first establish the functional form of the population density within a segregated

district. In a district hosting population i only, land market clears so that λi(x)si(x) = 1

for all locations x where λi(x) > 0 (condition (iii)). Given this, the utility and the

population gradients are given by expressions (4) and (5) respectively. Differentiating

once more the utility expression yields

U ′′i = 0 ⇐⇒ −2τλi − βλ′′i = 0

This second order ordinary differential equation accepts the following class of solutions

λi(x) = Ci cos δ (x− φi) (7)

where δ2 = 2τ/β and the coeffi cients Ci and φi are constants to be determined. We define

a subcenter as a location where the density λi(x), and therefore, the land rent R(x),

are maximal. As function (7) has a maximum at x = φi, the coeffi cient φi determines

the location of a subcenter (if it exists), and the coeffi cient Ci measures the amplitude

of population i’s density and therefore the population density, which corresponds to the

population density at its subcenter.

We now analyze the structure of cities with two and three segregated districts.

4.1 Two districts

Let the districts [0, b1] and [−b2, 0] host populations 1 and 2 respectively. Such an urban

structure is best illustrated by the Island of Montreal or the city of Belfast where individ-
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uals segregate in two distinct areas based on language or religious grounds. Population

densities are described by λ1(x) ≥ 0 for x ∈ [0, b1] and by λ2(x) ≥ 0 for x ∈ [−b2, 0]. A

spatial equilibrium is then defined by a set of scalars and functions (bi, λi), i = 1, 2, which

satisfy the following conditions:

(a) the no-relocation arbitrage conditions within a district: U ′1(x) = 0, ∀x ∈ [0, b1] and

U ′2(x) = 0, ∀x ∈ [−b2, 0]

(b) the no-relocation arbitrage conditions between districts: U1(x) ≤ U1(0), ∀x ∈ [−b2, 0]

and U2(x) ≤ U2(0), ∀x ∈ [0, b1]

(c) the continuity of bid rents at the borders of each district: ψ2(0) = ψ1(0) and ψ1(b1) =

ψ2(−b2) = 0, and

(d) the total population constraint: P1 =
∫ b1
0
λ1(x)dx and P2 =

∫ 0
−b2 λ2(x)dx

Conditions (a) and (b) ensure that agents have no incentive to relocate to another

location regardless of which population inhabits it. Conditions (c) ensure that land is

allocated to the highest bidder at the district border and that land is prices at its oppor-

tunity cost at the city edge. Conditions (d) guarantees that each districts is occupied by its

corresponding population. Note that the bid rent conditions (c) imply that λ2(0) = λ1(0),

λ1(b1) = 0, and λ2(−b2) = 0. This is because the bid rent ψi(x) is inversely related to the

use of space, si(x), which is itself inversely related to the population density, λi(x).

Using conditions (a), (c) and (d), we compute the spatial distributions (7) as (see

details provided in Appendix A)

λ1 = C1 cos[δ(x− φ1)] and λ2 = C2 cos[δ(x+ φ2)] (8)

where

C1 =
δ

2
(P1 + αP2) and C2 =

δ

2
(αP1 + P2) (9)

sin(δφ1) =
P1 − αP2
P1 + αP2

and sin(δφ2) =
P2 − αP1
P2 + αP1

(10)
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City borders are given by bi = φi + π/(2δ), i = 1, 2 .

Because P1 > P2, we have C1 > C2 so that population 1 reaches higher densities than

population 2. From expression (10), it is readily checked that φ1 > 0, φ1 > φ2, and

b1 > b2. The maximum density of population 1 is C1 whereas that of population 2 may be

less than C2. Thus population 1 is more concentrated and benefits from a better access to

agents of its own group. Figure 1 depicts the urban structure with two spatial districts.

INSERT FIGURE 1 HERE

We still have to check whether this urban structure satisfies the no-relocation arbitrage

conditions (b). The first condition states that agents of population 1 have no incentive to

relocate in population 2’s district. This can be checked by using relation (6),

U ′1(x) = τ (1− α)
{
P1 − [P2 − 2P−2 (x)]

}
> 0

which means that U1(x) ≤ U1(0), x ∈ [−b2, 0]. This is because P1 is larger than P2 and

P−2 (x) increases from 0 to P2 in the interval [−b2, 0]. No individual of the large population

has an incentive to relocate to the small population area. In contrast, the second condition

(b) does not always hold. By expression (6), we have

U ′2(x) = τ (1− α)
{
−P2 − [P1 − 2P−1 (x)]

}
where the curly bracket increases from −(P1 + P2) < 0 to (P1 − P2) > 0 in the interval

[0, b1]. Hence, the utility differential U2(x)−U2(0) =
∫ x
0
U ′2(z)dz is a convex function that

first falls under zero and then eventually increases above zero. Clearly, U2(0) ≥ U2(x),

∀x ∈ [0, b1], if and only if U2(0) ≥ U2(b1). Given that U2(0) = U2(−b2) = S2(−b2) + Y

and U2(b1) = S2(b1) + Y , the no-relocation arbitrage condition (b) can be rewritten as

S2(−b2) ≥ S2(b1). An individual of the small population area may well gain from moving

to the large population area so as to benefit from a better access to the large group. In

Appendix A, we show that the latter condition can be rewritten as

2
√
αP1/P2 < (1 + α)

[
π − arccos

(
P1/P2 − α
P1/P2 + α

)]
(11)
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This argument yields the following Proposition.

Proposition 3 The spatial configuration with two segregated districts is a spatial equilib-

rium if S2(−b2) ≥ S2(b1); that is if condition (11) holds.

When P1/P2 → ∞, the inequality (11) is never satisfied. When P1/P2 → 1, the

condition becomes 2
√
α < (1 + α) {π − arccos [(1− α) / (α + 1)]}, which can be shown to

be always satisfied. More generally, it can be shown that there exists a unique threshold

for P1/P2 below which this condition is satisfied. So, the two-district configuration is an

equilibrium if populations are of similar sizes or if inter-group interactions are weak. In

equilibrium, the large population occupies a larger share of the urban area repelling the

small population towards the other city edge. The small population accommodates this

situation because its interactions with the large population are weak and because land

rents are too high in the other district.

We also investigate whether the spatial distribution of agents exhibit one or two sub-

centers, where a subcenter is defined as a location where the density λi(x), and therefore,

the land rent R(x), are maximal. It readily comes from (10) that the city exhibits one

center at x > 0 if P1/P2 > 1/α (i.e. φ1 > 0, φ2 < 0), while it exhibits two of them - one

on each side of x = 0 - if 1 < P1/P2 < 1/α (i.e. φ1 > 0, φ2 > 0).

Corollary 4 The two-district city exhibits a single subcenter if α > (P1/P2)
−1 and two

subcenters otherwise.

Both urban structures are depicted in the two panels of Figure 1. Of course, when

intra- and inter-group social interactions become equally frequent (α → 1), the location

choices made by agents lead to the emergence of a single subcenter. On the other hand,

when intra-group social interactions dominate inter-group ones (α→ 0), each population

group locates around its own subcenter while still benefiting from inter-group interactions

as both groups live in the same city. Relative population sizes also matter. When these

are similar, each population also forms its own subcenter. This is because strong intra-

group interactions create a separate basin of attraction for each population. In contrast,
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when one population is much larger than the other one, its density becomes so high that

it also becomes a basin of attraction for the small population, which ceases to have its

own subcenter.

4.2 Three districts

We consider urban structures with three districts. In these structures, the large population

may locate at either the center or the edge of the city.

Large population in the central district We consider a symmetric spatial configu-

ration in which the large population 1 resides within the central district [−b1, b1] and the

small population 2 within the two edge districts [−b2,−b1] and [b1, b2].4 Such an urban

structure is reminescent of some European cities like Paris where the native population

concentrates around the city center and ethnic populations reside in the suburbs.

A spatial equilibrium is a set of non negative scalars bi, i = 1, 2 and two even functions

λ1 : [−b1, b1]→ R+ and λ2 : [−b2,−b1] ∪ [b1, b2]→ R+ which satisfy:

(a) the no-relocation arbitrage conditions within each district: U ′1(x) = 0, ∀x ∈ [0, b1]

and U ′2(x) = 0, ∀x ∈ [b1, b2]

(b) the no-relocation arbitrage conditions between districts: U2(x) ≤ U2(b1), ∀x ∈ [0, b1]

and U1(x) ≤ U1(0), ∀x ∈ [b1, b2]

(c) the land rent continuity at district borders ψ2(b−1 ) = ψ1(b
+
1 ) and ψ2(b2) = 0

(d) the total population constraint P1 =
∫ b1
−b1 λ1(x)dx and P2 = 2

∫ b2
b1
λ2(x)dx

These conditions have an interpretation similar to that provided in the previous sec-

tion. Conditions (a), (c) and (d) allows us to determine the spatial distributions as (see

4It can be shown that no asymmetric configuration with three districts can be a spatial equilibrium

(see Appendix C).
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details provided in Appendix B)

λ1(x) = λ1(−x) = C1 cos (δx) if x ∈ [0, b1]

λ2(x) = λ2(−x) = C2 cos[δ(x− φ2)] if x ∈ [b1, b2] (12)

where

C1 =
δ

2

√
P 21 + P 22 + 2αP1P2 and C2 =

δ

2
(P2 + αP1) (13)

while φ2 = b2 − π/(2δ) and the district borders b1 and b2 solve

sin δb1 =
P1√

P 21 + P 22 + 2αP1P2
(14)

cos δ (b2 − b1) =
αP1

αP1 + P2
(15)

The corresponding urban structure is illustrated in the left panel of Figure 2.

INSERT FIGURE 2 HERE

In the above urban structure, the no-relocation arbitrage conditions (b) are always

satisfied. This means that no individual has an incentive to relocate in the district hosting

the other population. On the one hand, because of its size, the large population benefits

from more numerous social interactions. It is better off locating around the city center

where it gets a closer access to agents of its own group. For x ∈ [b1, b2], condition (6)

leads to the utility gradient U ′1(x) = τ (1− α)
[
−P1 − (P+2 (x)− P−2 (x))

]
< 0 as P2 < P1.

Hence U1(x) ≤ U1(0) for x ∈ [b1, b2]. On the other hand, the small population has

no incentive to relocate to the center. To show this, observe that by condition (6),

for x ∈ [0, b1], we get P+2 (x) = P−2 (x) = P2/2 so that the utility gradient U ′2(x) =

τ (1− α)
[
−(P+1 (x)− P−1 (x))

]
increases from zero to τ (1− α)P1 > 0 when x rises from

0 to b1. This means that U ′2(x) ≥ 0 and thus U2(x) ≤ U2(b1), ∀x ∈ [0, b1]. Intuitively, the

higher density of the large population in the city center also benefits the small population.

Although it interacts less frequently with the large group, it gets a close access to a large

number of agents of the other group.

These arguments yield the following Proposition.
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Proposition 5 The urban structure with three segregated districts and the large popula-

tion in the central district is always a spatial equilibrium.

In this three-district city, the large population occupies the city area where it benefits

from a closer access to both populations at a high residence cost while the small population

benefits from lower land rents in the city edges at the expense of a higher access cost.

Moreover, the city exhibits a single subcenter in x = 0. This is because the location

x = φ2 cannot be a subcenter for population 2. If it were so, one should have φ2 > b1,

which contradicts the condition φ2 = b2 − π/(2δ) and δ (b2 − b1) < π/2 imposed by (15).

Hence, in this urban structure, the large population constitutes a basin of attraction that

is large enough to impede the creation of subcenters within the small population’districts.

Large population in the edge district We now consider a spatial configuration where

the small population 2 resides within the central district [−b2, b2] and the large population

1 within the two edge districts [−b1,−b2] and [b2, b1]. This structure is reminescent of some

US cities like Detroit where the White population resides away from the city center while

the Black (ethnic) population resides within the center.

The equilibrium analysis performed in the previous subsection applies here by simply

swapping subscripts 1 and 2. The corresponding urban structure is depicted in the right

panel of Figure 2. Yet, an important change concerns the no-relocation arbitrage condition

(b) as the small population may here have an incentive to relocate in a peripheral district.

We have that, for x ∈ [b2, b1], U ′2(x) = τ (1− α)
[
−P2 − (P+1 (x)− P−1 (x))

]
which rises

from −τ (1− α)P2 < 0 to τ (1− α) (P1 − P2) > 0. Hence, U2(x) is a convex function on

the interval [b2, b1]. Therefore, because U2(x) is constant for all x ∈ [b2, b1], the condition

U2(0) ≥ U2(x) is equivalent to U2(0) ≥ U2(b1). The utility differential U2(0)− U2(b1) ≥ 0

can be written as (see details provided in Appendix B)

π(1 + α)− 2
√

(2α + P1/P2)P1/P2 ≥ 2(1 + α) arcsin

(
α

α + P1/P2

)
(16)

As in the analysis of two-district cities, only individuals of the small population may

benefit from relocating to the large population area.
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Proposition 6 The urban structure with three segregated districts and the small popula-

tion in the central district is a spatial equilibrium if U2(0) ≥ U2(b1); that is, if condition

(16) holds.

A numerical analysis of condition (16) shows that the above three-district city is a

spatial equilibrium if population sizes are suffi ciently similar or if inter-group interactions

are weak enough. The explanation for this is as follows. Consider the case where the small

population in the city center shrinks and the large population in the city edges grows. The

growth of the large population increases the benefits of intra- and inter-group interactions

while the decline of the small population diminishes these benefits. At city edges, the

stronger intra-group interactions entice the large population to increase their bid for land

use. This pressure on land rents in city edges transmits to the city center. At the same

time, individuals of the small population benefits more from inter-group interactions than

from intra-group ones, and have less incentive to stay close to each other. At some point,

when the small population is small enough, its agents find the city edges more attractive

and start relocating there. The three-district urban structure with the small population

at the central district can then no longer be a spatial equilibrium. Note that the existence

of such an equilibrium configuration stems from a coordination problem. Although the

large population would benefit from locating around the city center, no individual agent

has an incentive to do so as she would face an excessive land rent and lose access to her

own group which is located in the city edges.

By swapping subscripts 1 and 2 in expressions (13)-(14), we get the coeffi cients Ci and

the district borders bi

C1 =
δ

2
(P1 + αP2) and C2 =

δ

2

√
P 21 + P 22 + 2αP1P2

where φ1 = b1 − π/(2δ) and b1 and b2 solve

sin δb2 =
P2√

P 21 + P 22 + 2αP1P2

cos δ (b1 − b2) =
αP2

αP2 + P1
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The city exhibits a single subcenter at x = 0 as b2−φ1 > 0. Indeed, the last condition

implies that b1 − b2 < π/(2δ), which yields φ1 − b2 < 0 because φ1 = b1 − π/(2δ). This

result is similar to that found in the previous case, where the large population locates in

the central district.

Corollary 7 Regardless of which population locates in the central district, the three-

district city exhibits a single subcenter.

In a three-district city, any population located around the city center creates a strong

basin of attraction for both populations and impedes the creation of subcenters in the

periphery, see Figure 2.

5 Discussion

In this section, we study the properties of the equilibrium structures obtained in Section 4,

discuss the multiplicity of equilibria, and compare the utilities derived by each population

group.

5.1 Comparative statics

Table 1 summarizes the comparative statics analysis of the two- and three-district con-

figurations denoted respectively by (21), (212) and (121) indicating which population

occupies the central district (see Appendices A and B for mathematical expressions). So

as to ease the comparison, we denote the district area by Bi = bi for the two-district

city and the central district of a three-district city, and by Bi = 2 (bi − bj) for an edge

district hosting population i 6= j in a three-district city. Many results are identical to all

city structures. For instance, more frequent inter-group interactions (higher α), weaker

preferences for space or larger access costs (higher δ2 = 2τ/β) induce spatial concentra-

tion: agents locate closer to other individuals of their own group and reside in districts
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with smaller areas Bi and larger densities Ci; see columns 1, 2, 5 and 6. This is intu-

itive: agents substitute the use of space for social interactions so as to benefit from more

frequent interactions with individuals of their own groups.

City structure dBi
dα

dBi
dδ

dB1
d(P1/P2)

dB2
d(P1/P2)

dCi
dα

dCi
dδ

dCi
d(P1/P2)

subcenter(s)

12 - - + - + + + 1 or 2

212 - - - - + + + 1

121 - - + - + + + 1
Table 1: Comparative statics summary

Other results may differ across city structures. On the one hand, the emergence of

a second subcenter may arise in a two-district city only, see column 8. This point has

been commented in Section 4 already. On the other hand, the impact of a rise in the

population ratio P1/P2 on the area of districts depends on the city structure. For any

urban structure, a rise in the ratio P1/P2 induces the small population 2 to live in a district

with a smaller area B2 simply because fewer agents demand land space (see column 4).

This also increases the density amplitude Ci for both populations (see column 7). This

is because the increased number of individuals of population 1 raises their incentive to

locate closer to each others. The pressure on land rents exerted by population 1 increases,

which transmits to the district hosting population 2 that is then enticed to use less space.

By contrast, the effect of rise in the ratio P1/P2 on the district hosting the large

population 1 depends on whether the large population locates in the city edge. When

this is the case (i.e. configurations 21 and 121), population 1 can expand horizontally

through an increase of the district area (that is a larger B1 as reflected in see rows 1

and 3 in column 3). This horizontal expansion is due to the availability of cheap land

at city edges. On the other hand, when the large population 1 occupies the central

district (i.e. configuration 212), land rents at the edge of the central district are so high

that any horizontal expansion is refrained. Instead, population 1 concentrates around

the district center. Moreover, the rising share of population 1 increases the benefit from
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intra-group social interactions, which induces population 1 to concentrate even further.

As a consequence, the area of the central district B1 shrinks (see row 2 in column 3).

5.2 Multiplicity of equilibria

Here we analyze the conditions under which the urban structures analyzed in Section 4

exist. In particular, we highlight the possibility of multiple spatial equilibria. Figure 3

depicts the equilibrium urban structures with two or three segregated districts in terms of

the population ratio P1/P2 and the intensity of inter-group interactions α. A population

residing in a district exhibiting a subcenter (resp. no subcenter) is indicated by a bold

number (resp. regular number). Note that the curves displayed in Figure 3 are indepen-

dent of δ, and therefore of the preference for land β and the access cost τ . This means that

Figure 3 accounts for all the parameters of the model (α and P1/P2). The two-district city

is an equilibrium provided that P1/P2 and α are not too large (see areas 12 and 12). The

three-district city with the large population 1 living in the central district is always an

equilibrium regardless of parameter values (see area 212). In contrast, the three-district

city with the small population 2 living in the central district is an equilibrium only for

a low population ratio P1/P2 and a low α (see area 121). Figure 3 illustrates the exis-

tence of multiple equilibria. Depending on parameter values (P1/P2 and α), the economy

exhibits one, two, or three spatial equilibria. The more similar the population sizes P1

and P2, and the weaker the inter-group interactions α, the more likely several equilibria

to emerge.

INSERT FIGURE 3 HERE

When several spatial configurations are possible, spatial equilibria can be ranked in

terms of the utility derived by each population. Though this ranking could not be es-

tablished analytically, it does not depend on the preference for land β nor on the access
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cost τ . Figure 4 displays each population’s preferred urban configuration in terms of the

population ratio (P1/P2) and the intensity α of inter-group interactions.5

INSERT FIGURE 4 HERE

For high population ratios and strong inter-group interactions, the urban structure

(212) is the unique spatial equilibrium and leaves no other choice to individuals. However,

multiple equilibria exist for low population ratios or weak inter-group interactions. Figure

4 shows that population 1 prefers the three-district structure (P1:212) where it resides

in the central district while population 2 prefers the two-district configuration (P2:21).

In this case, both populations therefore disagree about the urban structure to adopt.

Finally, for suffi ciently low population ratios, both populations prefer the two-district

urban configuration (P1:21 and P2:21). In this latter case, urban configurations are Pareto

ranked and a common agreement can be reached so as to which spatial equilibrium is best.

A somewhat surprising result of our analysis is that the small population 2 always

gets a higher utility in the two-district configuration. This configuration is preferred over

the three-district urban configuration even if population 2 resides in the central district.

This is because in the three-district urban configuration (121), the pressure on land prices

exerted by population 1 in city edges transmits to the central district and outweights the

benefits of intra-group interactions of population 2. Figure 4 also shows that population

1 displays a similar preference for the two-district configuration when populations have

similar sizes. In this case, population 1 is worse off in configuration (212) as it faces

too high land prices in the central district which outweights the benefit of intra-group

interactions. It is the lack of access to city edges where land is cheaper that makes

population 1 prefer configuration (21).

5Figure 4 summarizes the information contained in Tables 2 and 3 provided in Appendix D.
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5.3 City growth and social integration

Our model helps understanding how city growth may affect urban structures. When city

growth is not anticipated by agents, the urban structure depends only on population

sizes. However, if both populations grow at the same rate, the urban structure remains

unchanged. If some population grows at a faster rate than the other one, the city may

incur a spontaneous restructuring process. To illustrate such a transition, suppose that

the small population remains constant and has initially a size similar to that of the large

group. In this case, it is possible that it resides in the central district surrounded by two

edge districts hosting the large population (configuration 121). As the large population

grows in size, it exerts a high pressure on land rents, which transmits from the city edges

into the city center through the land market. At some point, the small population moves

to a city edge, replacing the former population which was living there. This corresponds

to a transition from configuration 121 to configuration 21, see transition a in Figure 3.

The intuition is as follows. Rents have become too high in the central district so that some

individuals of the small population have an incentive to move to the city edge so as to

benefit from lower rents even though their intra-group interactions become more costly. As

more of these individuals move to the edge district, their intra-group interactions become

less costly, which makes the city edge more attractive. The restructuring process ends

when all individuals of the small population 2 have relocated to the city edge. Of course,

in our model this transition is instantaneous. Moreover, consequences of city growth do

not end up here.

As the large population grows further in size, the city district hosting it expands hori-

zontally, repelling the small population further away. At some point, the small population

relocates in the two city edges (configuration 212). This corresponds to a transition from

configuration 21 to configuration 212, see transition b in Figure 3. When the population

ratio P1/P2 increases, configuration 21 has to restructure as it ceases to be an equilibrium.

Intuitively, as the large population derives larger benefits from its intra-group social in-

teractions, it can bid more for land. This pressure on land rents transmits in the small
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population’s district through the land market so that this latter population spread across

locations to face lowee land rents. By relocating to both city edges, the small population

ends up splitting into two sub-groups. By doing so, it compensates the loss in inter-group

interactions by larger land plots.

Because of multiple equilibria, city growth may induce spontaneous transition from one

urban structure to another. So, urban structures depend on history. Whereas the growth

of the large population can reshape the urban structure, a decline of this population has

no effect on it. This is because any urban structure, which is an equilibrium for some

initial population levels, remains so as the large population falls in size, see Figure 3.

Interestingly, this suggests that over time, old cities like Paris have undergone several

transitions and are now locked in configuration 212 with the large (native) population in

the city center. In contrast, younger US cities like New York or Detroit may not have

undergone such transitions and display an urban configuration with the minority group

in the city center (configuration 121). Our model implies that over the long run, the

minority group will be repelled to the city edge if the native population grows a faster

rate than the minority group.

Our model also sheds some light on the impact of social integration programs on

urban structures. Schooling and social programs aim at fostering social integration of

immigrants with the native population. Urban planners and labor and urban economists

often advocate a better social integration for effi ciency and equity reasons. For instance,

in Benabou (1993), under-investment in education is due to market imperfections arising

from local human capital spillovers. Also, de Marti and Zenou (2012) point out that

only substantial (versus partial) lower inter-community socialization costs can improve

effi ciency. Interpreting the frequency α of inter-group interactions as an indicator of social

integration, our model provides some interesting insights, see Figure 3. First, segregation

prevails as long as α < 1. Therefore, the level of social integration should be very high

(actually α = 1) to eliminate spatial segregation and yield spatial integration. So, the

lack of spatial integration should not be considered as an indicator of ineffi ciency of social
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integration programs. Second, when both populations have similar sizes, social integration

programs that promote higher frequencies of inter-group interactions have no effect on the

city structure. The population residing in the city center and in the city edges does not

relocate as the frequency α of inter-group interactions decreases. This means that social

integration programs may be ineffective in reshaping the urban landscape. Third, when

one population is significantly larger than the other one, social integration may even

fragment spatially the minority group and split into subgroups (see transition c in Figure

3).

6 Conclusion

In this paper, we have studied how segregated districts emerge endogenously in a city

and how multiple spatial equilibria arise. Our analysis embeds Shelling’s (1971) spatial

segregation framework and Beckmann’s (1976) urban land market. We have discussed

the implications of our model regarding city growth and social integration programs. The

paper also sets the stage for future research. Dynamic considerations, which are absent

from our model, may be useful in understanding the evolution of spatial neighborhoods

and how history may select spatial equilibria. The spatial segregation of several groups

into several urban districts is another issue to be examined. It would also be interesting

to compare the equilibrium outcome with the socially optimal allocation of resources, as

well as with the outcome of spatial/social integration programs that involve some specific

social mix within urban districts. Finally, the present analysis might be usefully exploited

to discuss issues related to urban labor markets, school segregation and social capital.

Indeed, part of the benefits of social interactions is the access to information about jobs

(see Granovetter, 1973; Zenou, 2012). School pupils’composition may shape the long run

frequencies of inter-group social interactions and therefore affect urban segregation. Also,

social interactions and the spatial distribution of agents contribute to the social capital

that agents have in urban areas.
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Appendix A: two-district urban structure

By expression (7), we can set λ1 = C1 cos[δ(x − φ1)] and λ2 = C2 cos[δ(x + φ2)]. First,

ψ1(b1) = ψ2(−b2) = 0 implies that

λ1(b1) = C1 cos[δ(b1 − φ1)] = C2 cos[δ(−b2 + φ2)] = λ2(−b2) = 0

so that

b1 = φ1 +
π

2δ
; b2 = φ2 +

π

2δ

Second, U ′1(b1) = U ′2(−b2) = 0 implies that

−τP2 − ατP1 + βC2δ sin[δ(−b2 + φ2)] = 0

−τP1 − ατP2 + βC1δ sin[δ(b1 − φ1)] = 0

so that

C1 =
δ(P1 + αP2)

2
; C2 =

δ(αP1 + P2)

2

Therefore,
C1
C2

=
P1 + αP2
αP1 + P2

Third population constraints
∫ b1
0
λ1(x)dx = P1 and

∫ 0
−b2 λ2(x)dx = P2 imply

C1
δ

(1 + sin(δφ1)) = P1

C2
δ

(sin(δφ2) + 1) = P2

which yields

φ1 : sin(δφ1) =
P1 − αP2
P1 + αP2

= − cos(δb1)

φ2 : sin(δφ2) =
P2 − αP1
P2 + αP1

= − cos(δb2)

Surplus differential: We now compute the equilibrium condition S2(−b2) ≥ S2(b1).

For any x ∈ [0, b1], we can write
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S2(x) =

∫
(1− τ |x− y|)λ2(y)dy + α

∫
(1− τ |x− y|)λ1(y)dy

=

∫ 0

−b2
(1− τ |x− y|)λ2(y)dy + α

∫ b1

0

(1− τ |x− y|)λ1(y)dy

Applying this expression to the locations x = −b2 and x = b1 we get

S2(−b2)− S2(b1) = −τ
∫ 0

−b2
(2y − b1 + b2)λ2(y)dy − ατ

∫ b1

0

(2y − b1 + b2)λ1(y)dy

One computes∫ 0

−b2
(2y − b1 + b2)λ2(y)dy = (−b1 + b2)P2 +

∫ 0

−b2
(2y)λ2(y)dy

= (−b1 + b2)P2 + C2

∫ 0

−b2
(2y) cos[δ(y + φ2)]dy

= (−b1 + b2)P2 + C2
2

δ2
(cos δφ2 − δb2)

where the last line obtains because∫ 0

−b2
(2y) cos (δ (y + φ2)) dy =

2

δ2

∫ 0

−δb2
δy cos (δy + δφ2) dδy

=
2

δ2

∫ 0

−δb2
z cos (z + δφ2) dz

=
2

δ2
(cos δφ2 − cos δ (φ2 − b2) + δb2 sin δ (φ2 − b2))

=
2

δ2
(cos δφ2 − δb2)

Also, one computes∫ b1

0

(2y − b1 + b2)λ1(y)dy = (−b1 + b2)P1 +

∫ b1

0

(2y)λ1(y)dy

= (−b1 + b2)P1 + 2C1

∫ b1

0

y cos[δ(y − φ1)]dy

= (−b1 + b2)P1 + 2C1
1

δ2
(− cos δφ1 + δb1)
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where the last line obtains because∫ b1

0

y cos[δ(y − φ1)]dy =
1

δ2

∫ δb1

0

δy cos (δy − δφ1) dδy

=
1

δ2

∫ δb1

0

z cos (z − δφ1) dz

=
1

δ2
(− cos δφ1 + δb1)

Therefore, the surplus differential is positive iff S2(−b2)− S2(b1) ≥ 0; that is, if

C2 (cos δφ2 − δb2) + αC1 (− cos δφ1 + δb1) ≤
δ2

2
(b1 − b2) (P2 + αP1)

or equivalently

−δb1P2(−1 + α2) + α(P1 + αP2) cos δφ1 − (P2 + αP1) cos δφ2 > 0 (17)

Because

cos2 δφ1 = 1− sin2 δφ1 = 1−
(
P1 − αP2
P1 + αP2

)2
= 4α

P1P2

(P1 + αP2)
2

cos2 δφ2 = 1− sin2 δφ2 = 1−
(
P2 − αP1
P2 + αP1

)2
= 4α

P1P2

(P2 + αP1)
2

we have that

(αP1 + P2) cos δφ2 − α (P1 + αP2) cos δφ1 = 2 (1− α)
√
αP1P2

So, the condition (17) becomes

2
√
αP1/P2 < (1 + α)

[
π − arccos

(
P1/P2 − α
P1/P2 + α

)]
Comparative statics Here is a comparative statics analysis of the city equilibrium.

First, population densities increase and district borders shrink as the access cost increases

and the preference for space falls (a higher δ2 = 2τ/β raises Ci and reduces bi), see

relations (9) and (10). The population density increases as population sizes grow in equal

proportions (keeping P1/P2 constant, higher values of P1 and P2 raise Ci only). A larger
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share of population 1 (P1/P2) leads district 1 to expand and district 2 to shrink. The

city expands (larger bi) if the frequency of inter-group interaction (α) falls, see relation

(10). So, more frequent inter-group interactions concentrate populations further as they

are able to bid more for land.

Utilities Utilities can be computed as

U1 = P1
(
1− α2

)
+
τ

2
b2α (P2 + αP1)−

τ

2
b1 (P1 + αP2) +

τ

δ
(α− 1)

√
αP1P2 + Y

U2 =
τ

2
b2(αP1 + P2)− α

τ

2
b1(P1 + αP2)−

τ

δ
(1− α)

√
αP1P2 + Y

Their difference is given by

∆U = P1
(
1− α2

)
− 1

2
(1− α) [b1τ(P1 + αP2)− b2τ(αP1 + P2)]

Appendix B: three-district urban structure

Here, we focus on the case when the large population 1 is in the city center. The converse

configuration can be obtained by swapping subscripts 1 and 2. By using the expressions

λ1 = C1 cos (δx) if x ∈ [0, b1] and λ2 = C2 cos[δ(x− φ2)] if x ∈ [b1, b2], the conditions for

population mass conservation and land rent arbitrage at district borders become

P1 =
∫ b1
−b1 cos (δx) dx = 2C1δ

−1 sin δb1

P2 = 2C2δ
−1 [sin δ(b2 − φ2)− sin δ(b1 − φ2)]

ψ2(b1) = 1
2β
C22 cos2[δ(b1 − φ2)] = 1

2β
C21 cos2 (δb1) = ψ1(b1)

λ2(b2) = C2 cos[δ(b2 − φ2)] = 0

(18)

The last line of (18) implies that b2 − φ2 = π/2δ. In addition, note that U ′2(b2) = 0

implies that by (5), λ′2(b2) = − τ
β

[P2 + αP1], which yields

C2 =
1

2
δ (P2 + αP1)

because λ′2(b2) = C2 sin δ(b1 − φ2) = C2.
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The three first lines of (18) become
δP1
2C1

= sin δb1

1− δP2
2C2

= sin δ(b1 − φ2)
cos[δ(b1−φ2)]
cos(δb1)

= C1
C2

Squaring those expressions and using cos2 x = 1− sin2 x yields

C21 = (δ/2)2
(
P 21 + P 22 + 2αP1P2

)
So,

sin δ(b1 − φ2) = 1− P2
(P2 + αP1)

=
αP1

αP1 + P2

sin2 δb1 =
P 21

P 21 + P 22 + 2αP1P2

Utility differential: We now compute the equilibrium condition U2(0) − U2(b1). For

any x ∈ [0, b1], we can write

U2(0) = α

∫ −b2
−b1

(1 + τy)λ1(y)dy + 2

∫ b2

0

(1− τy)λ2(y)dy

+ α

∫ b1

b2

(1− τy)λ1(y)dy − βλ2(0)

U2(b1) = α

∫ −b2
−b1

(1− τ(b1 − y))λ1(y)dy +

∫ b2

−b2
(1− τ(b1 − y))λ2(y)dy

+ α

∫ b1

b2

(1− τ(b1 − y))λ1(y)dy − βλ1(b1)

By replacing the value of (b1, b2, φ1, φ2, C1, C2), we get that the condition U2(0)−U2(b1) ≥ 0

is equivalent to

π(1 + α)− 2
√
P (P + 2α) ≥ 2(1 + α) arcsin(

α

P + α
)

where P = P1/P2.
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Comparative statics when the large population is at the city center First,

population densities increase and district borders shrink as the access cost increases and

the preference for space falls (a higher δ2 = 2τ/β raises both C1 and C2 by relation (13),

while it reduces b2 − b1 and b1 by relations (15) and (14)). Second, population densities

increase as population sizes grow in equal proportions: keeping P1/P2 constant, larger

populations P1 and P2 raise C1 and C2 only. Third, the city expands (larger b1 and

b2 − b1) if the frequency of inter-group interactions α decreases. The lower returns from

inter-group interactions induce lower bid rents, and thus the dispersion of agents. Fourth,

a larger share of population 1 (P1/P2) leads the central district to shrink and the edge

district to expand (a higher ratio P1/P2 raises b1 − b2 and decreases b1 by relations (15)

and (14)).

Comparative statics when the large population is at the city edge The com-

parative statics analysis is derived in a way similar to that used in the previous case. We

simply need to swap subscripts 1 and 2. Hence, population densities increase and the

district borders shrink as the access cost increases and the preference for space falls (a

higher δ2 = 2τ/β raises C1 and C2 while it reduces b1 − b2 and b2). Population densities

increase as population sizes grow in equal proportions (keeping P1/P2 constant, higher

values of P1 and P2 raise C1 and C2 only). The city expands (larger b2 and b1− b2) when

the frequency of inter-group interaction (α) decreases. A larger share of population 1

(P1/P2) decreases the area of the central district hosting population 2 (smaller b2) and

increases that of the edge district hosting population 1 (larger b1 − b2).
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Appendix C

We here show that no asymmetric configuration with three districts can be a spatial

equilibrium. We consider the following equilibrium candidate

λ1(x) = C1 cos(δx), y ∈ [−b2, b1]

λ2(x) =

 C2 cos(δ(x− φ1)) , x ∈ [b1, b3]

C3 cos(δ(x+ φ2)) , x ∈ [−b4,−b2]

and we show that equilibrium conditions are not compatible with the above asymmetric

solution.

The conditions U ′2(b3) = Ú2(−b4) = 0 lead to −τP2 − ατP1 + C2 sin(δ(b3 − φ1)) =

τP2 + ατP1 + C3 sin(δ(−b4 + φ2)) = 0. By using conditions ψ1(b1) = ψ2(b1), ψ1(b1) =

ψ2(b1), and ψ2(−b2) = ψ1(−b2),we get δ(b3 − φ1) = −δ(−b4 + φ2) = π/2 and

C21 = C22 cos2(δ(b1 − φ1))/ cos2(δb1) = C23 cos2(δ(−b2 + φ2))/ cos2(δb2)

The conditions U ′2(b3) = Ú2(−b4) = Ú1(0) = 0 lead respectively to C2 = C3 =

τ(P2 + αP1)/(βδ) and

sin(δb2)− sin(δb1)− α(sin(δ(−b2 + φ2)) + sin(δ(b1 − φ1))) = 0

The two above conditions can be written as

m2 −m1 − α(m4 +m3) = 0

(1−m2
3)(1−m2

2)− (1−m2
4)(1−m2

1) = 0

where m1, m2, m3, and m4 denote sin(δb1), sin(δb2), sin(δ(b1−φ1)), and sin(δ(−b2+φ2)).

The solutions for m2 and m4 are

(m1,−m3) and

(
−m1 +m3

1 − 2αm3 + 2αm2
1m3 − α2m1 + α2m1m

2
3

−1 +m2
1 + α2 − α2m2

3

,
−m3 +m2

1m3 − 2αm1 + 2αm1m
2
3 − α2m3 + α2m2

3

−1 +m2
1 + α2 − α2m2

3

)
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The first solution corresponds to the symmetric equilibrium while the second one is

our asymmetric candidate.

By plugging the second solution into the two constraints, C1/δ(m1 + m2) = P1 and

C2/δ(m4 − m3 + 2) = P2, we get a system of equations for m1 and m3. The solutions

are given by (m1,m3) = (P1(α − 1)/(P2 + αP1), P1(α − 1)/(P2 + αP1)) and (m1,m3) =

(−P1(α+1)/(P2+P1α), P1(1+α)(P2+P1α)). Both solutions imply thatm1 < 0 meaning

that b1 would be negative.

Appendix D

Table 2 (resp. Table 3) provides the ranking of urban configurations (21, 212, and 121)

for individuals of population 1 (resp. for individuals of population 2).

INSERT TABLES 2 AND 3 HERE
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P1/P2 > α-1
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Figure 1: Two-district cities

2b− 1b0 2b− 1b0

The shaded area corresponds to the large population 1. In the left panel (resp. right panel), the urban
structure displays a single subcenter (resp. two subcenters).
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Figure 2: Three-district cities
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The shaded area corresponds to the large population 1. In the left panel (resp. right panel), the large population 1 is
hosted in the central district (resp. in the edge districts).



α

21 PP

(2 1 2)  (2  1)   (1 2 1)

(2 1 2) (2 1)

(2 1 2) (2 1)  (1 2 1)

Figure 3: Urban structure equilibria
Two- and three-district equilibria in terms of the population ratio P1/P2 and the intensity of inter-group interactions α. The two-
district city (21) (resp. the three-district city (121)) is a spatial equilibrium for parameter values at the left of the solid curve, 
representing condition (13) (resp. the dashed curve, representing condition (20)). Note that the three-district city (212) is a spatial 
equilibrium for all parameter values. The condition determining the number of subcentres in Corollary 4 is represented by the 
dotted curve so that a population residing in a district exhibiting a subcentre (resp. no subcentre) is indicated by a bold number 
(resp. a regular number).
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Figure 4: Preferred urban configuration by each population. 
Above the dashed curve, the only equilibrium is (212). Below the solid curve, both populations prefer the 
two-district city (21). In between these two curves, population 1 prefers the three-district city (212) while
population 2 prefers the two-district structure (21).
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Table 2: Urban configuration ranking for population 1
Each cell presents the ranking of urban configurations from most preferred
to least preferred by population 1.

P1êP2=1.5 2 2.5 3 3.5 4 4.5 5 5.5 6 6.5 7 7.5 8

α=0.9
21
212
121

212
21

212
21

212
21

212
21

212
21

212
21

212
21

212
21 212 212 212 212 212

0.8
21
212
121

212
21

212
21

212
21

212
21

212
21

212
21

212
21

212
21

212
21 212 212 212 212

0.7
21
212
121

21
212

212
21

212
21

212
21

212
21

212
21

212
21

212
21

212
21 212 212 212 212

0.6
21
212
121

21
212

212
21

212
21

212
21

212
21

212
21

212
21

212
21

212
21

212
21

212
21 212 212

0.5
21
212
121

21
212

212
21

212
21

212
21

212
21

212
21

212
21

212
21

212
21

212
21

212
21

212
21 212

0.4
21
212
121

21
212

212
21

212
21

212
21

212
21

212
21

212
21

212
21

212
21

212
21

212
21

212
21

212
21

0.3
21
212
121

21
212

212
21

212
21

212
21

212
21

212
21

212
21

212
21

212
21

212
21

212
21

212
21

212
21

0.2
21
212
121

21
212

21
212

212
21

212
21

212
21

212
21

212
21

212
21

212
21

212
21

212
21

212
21

212
21

0.1
21
212
121

21
212

21
212

21
212

212
21

212
21

212
21

212
21

212
21

212
21

212
21

212
21

212
21

212
21



Table 3: Urban configuration ranking for population 2
Each cell presents the ranking of urban configurations from most preferred
to least preferred by population 2.

P1êP2=1.5 2 2.5 3 3.5 4 4.5 5 5.5 6 6.5 7 7.5 8

α=0.9
21
121
212

21
212

21
212

21
212

21
212

21
212

21
212

21
212

21
212 212 212 212 212 212

0.8
21
121
212

21
212

21
212

21
212

21
212

21
212

21
212

21
212

21
212

21
212 212 212 212 212

0.7
21
121
212

21
212

21
212

21
212

21
212

21
212

21
212

21
212

21
212

21
212 212 212 212 212

0.6
21
121
212

21
212

21
212

21
212

21
212

21
212

21
212

21
212

21
212

21
212

21
212

21
212 212 212

0.5
21
121
212

21
212

21
212

21
212

21
212

21
212

21
212

21
212

21
212

21
212

21
212

21
212

21
212 212

0.4
21
121
212

21
212

21
212

21
212

21
212

21
212

21
212

21
212

21
212

21
212

21
212

21
212

21
212

21
212

0.3
21
121
212

21
212

21
212

21
212

21
212

21
212

21
212

21
212

21
212

21
212

21
212

21
212

21
212

21
212

0.2
21
121
212

21
212

21
212

21
212

21
212

21
212

21
212

21
212

21
212

21
212

21
212

21
212

21
212

21
212

0.1
21
121
212

21
212

21
212

21
212

21
212

21
212

21
212

21
212

21
212

21
212

21
212

21
212

21
212

21
212
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