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Abstract 

This study develops a spatial Susceptible–Exposed–Infectious–Recovered (SEIR) model that 

analyzes the effect of interregional mobility on the spatial spread of the coronavirus disease 2019 

(COVID-19) outbreak in Japan. National and local governments have requested that residents refrain 

from traveling between 47 prefectures during the state of emergency. However, the extent to which 

restricting the interregional mobility prevents infection expansion has not been elucidated. Our spatial 

SEIR model describes the spatial spread pattern of COVID-19 when people commute to a prefecture 

where they work or study during the daytime and return to their residential prefecture at night. We 

assume that people are exposed to infection risk during their daytime activities. According to our 

simulation results, interregional mobility restriction can prevent geographical expansion of the 

infection. However, in prefectures with many infectious individuals, residents are exposed to higher 

infection risk when their mobility is restricted. Our simulation results also show that interregional 

mobility restriction plays a limited role in reducing the national total number of infected individuals. 
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1. Introduction 

Non-pharmaceutical interventions (NPIs), which are public health measures for the 

prevention and control of infection, have played a key role in combating the coronavirus disease 

2019 (COVID-19) outbreak.1–3 To reduce the spatial spread of severe acute respiratory 

syndrome coronavirus 2 (SARS-CoV-2), national and local governments have enforced not only 

personal NPIs such as hand washing and mask-wearing, but also strict NPIs such as restricted 

movements, events, and travel, school closures, and quarantine.4,5 Among the strictest NPIs 

are lockdowns, which restrict our social and economic activities and trigger severe economic 

downturns.2 

National and local governments in Japan have requested that residents refrain from 

traveling between 47 prefectures during the state of emergency, which was declared on April 7 

of 2020.5,6 Although the interregional mobility restriction can be relaxed to include some 

outings after the state of emergency, the low level of lockdown restriction (i.e., voluntary 

compliance without penalties) was the first such experience in Japan.7,8 Therefore, how 

interregional mobility restriction limits the expansion of infection in Japan’s context is largely 

unknown, although many previous studies have emphasized the importance of understanding 

the spatial dynamics of spread.9–16 Effective control measures that prevent spatial spread of 

SARS-CoV-2 are urgently demanded, and how NPIs such as travel restrictions and social 

distancing mitigate the epidemic must be investigated.17–27 The present study aims to provide 

meaningful implications for combating the COVID-19 pandemic through interregional mobility 

restrictions. 

To analyze how interregional mobility affects the spatial spread of SARS-CoV-2, we 

developed a spatial Susceptible–Exposed–Infectious–Recovered (SEIR) model. As the virus 

spreads through face-to-face contact, a spatial network of contagion was built by introducing 

interregional mobility into the standard SEIR model. The model assumes that people commute 

to a region of work or study in the daytime and return to their residential region at night. It 

further assumes that people are exposed to SARS-CoV-2 infection risk during their daytime 

activities, meaning that residents in one region are exposed to heterogeneous infection risks of 

SARS-CoV-2. 

To simplify the spatial network analysis, the interregional mobility is mathematically 

treated as an origin–destination (OD) matrix. We demonstrate that our spatial SEIR model 

reduces to the standard SEIR model when the off-diagonal elements of the OD matrix are zero 
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(i.e., when people remain in their residential regions). Therefore, our spatial SEIR model can 

be viewed as a generalized version of the standard SEIR model. 

The developed approach can be also viewed as a spatial version of the social interaction 

approach. The social interaction approach constructs a contact matrix across various classes, 

such as age and gender.19,25,27–29 Similarly, face-to-face interactions across different regions are 

incorporated into the OD matrix.  

The daily OD matrix is constructed from the interregional mobility data obtained by 

geospatial information technology, namely, from the locational information of mobile phone 

users. These data capture the specific situations of individuals, such as commuting to work on 

weekdays and remaining in the residential region or traveling to another region during the 

weekends. By tracking the interregional mobility on each month, day, and time of day 

throughout one year, we successfully captured the daily interregional mobility flows in the 

counterfactual situation. 

This study aims to implicate effective control measures based on a simulation analysis. 

Because mitigating the COVID-19 pandemic is an urgent priority, an epidemic model that 

guides the planning of efficient control measures is essential when few ideal data are 

available.30–32 The spatial SEIR model assumes that the past interregional mobility trend will 

continue in future, regardless of how the COVID-19 pandemic evolves. Comparing those 

simulated from the SEIR model under the free mobility assumption with those simulated under 

the strict interregional mobility restriction, this study evaluates how restricting movement 

mitigates the spatial infection spread. 

2. Methods 

2.1. SEIR model without Interregional Mobility 

In the absence of interregional mobility, the SEIR model assumes that infection in one region 

is independent of infection in all other regions. In other words, infection expansion in one 

region does not affect the infection dynamics in other regions. Later, this baseline model will 

incorporate interregional mobility as a source of the spatial infection expansion.  

Suppose that there are 𝑚𝑚 regions and that region 𝑖𝑖 has population 𝑁𝑁𝑖𝑖. The total national 

population is expressed as 𝑁𝑁 = ∑ 𝑁𝑁𝑖𝑖𝑚𝑚
𝑖𝑖=1 . The birth and death rates are excluded from the model, 

meaning that the national total population is fixed over time. The regional population 

distribution is also fixed because residential change is forbidden in this model. The daily 
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mobility (e.g., commuting and travel) is similarly forbidden in the baseline SEIR model, but 

this assumption will be relaxed later. 

Let 𝑆𝑆𝑖𝑖(𝑡𝑡),  𝐼𝐼𝑖𝑖(𝑡𝑡) , and 𝑅𝑅𝑖𝑖(𝑡𝑡)  denote the number of susceptible, infectious, and recovered 

residents, respectively, in region 𝑖𝑖  at date 𝑡𝑡 . Let 𝐸𝐸𝑖𝑖(𝑡𝑡)  denote the number of residents in 

region 𝑖𝑖 at date 𝑡𝑡 who have been exposed to the COVID-19 infection, but who are in the 

latent period and not yet infectious. In the SEIR model without a spatial network, the epidemic 

dynamics are expressed as follows: 

d𝑆𝑆𝑖𝑖(𝑡𝑡)
d𝑡𝑡

= −𝛽𝛽
𝑆𝑆𝑖𝑖(𝑡𝑡)𝐼𝐼𝑖𝑖(𝑡𝑡)

𝑁𝑁𝑖𝑖
, 

d𝐸𝐸𝑖𝑖(𝑡𝑡)
d𝑡𝑡

= 𝛽𝛽
𝑆𝑆𝑖𝑖(𝑡𝑡)𝐼𝐼𝑖𝑖(𝑡𝑡)

𝑁𝑁𝑖𝑖
− 𝜀𝜀𝐸𝐸𝑖𝑖(𝑡𝑡), 

d𝐼𝐼𝑖𝑖(𝑡𝑡)
d𝑡𝑡

= 𝜀𝜀𝐸𝐸𝑖𝑖(𝑡𝑡) − 𝛾𝛾𝐼𝐼𝑖𝑖(𝑡𝑡), 

d𝑅𝑅𝑖𝑖(𝑡𝑡)
d𝑡𝑡

= 𝛾𝛾𝐼𝐼𝑖𝑖(𝑡𝑡), 

𝑆𝑆𝑖𝑖(𝑡𝑡) + 𝐸𝐸𝑖𝑖(𝑡𝑡) + 𝐼𝐼𝑖𝑖(𝑡𝑡) + 𝑅𝑅𝑖𝑖(𝑡𝑡) = 𝑁𝑁𝑖𝑖 , 

�𝑁𝑁𝑘𝑘

𝑚𝑚

𝑘𝑘=1

= 𝑁𝑁, 

(1) 

where 𝛽𝛽 is the transmission rate parameter, 𝜀𝜀 is the incubation rate, and 𝛾𝛾 is the 

recovery rate.  

The SEIR model without interregional mobility gives the baseline results for comparison 

with the extended model. From this comparison, we can observe how interregional mobility 

changes the results. A main distinguishing feature of the spatial SEIR model is the force 

of infection 𝜆𝜆(𝑡𝑡) , which measures the rate at which susceptible individuals contract the 

infection. This term in the standard SEIR model 𝛽𝛽𝐼𝐼𝑖𝑖(𝑡𝑡)/𝑁𝑁𝑖𝑖 is independent of infection in all 

other regions. We highlight how relaxing the assumption of interregional mobility changes the 

specified force of infection. 

2.2. SEIR model with Interregional Mobility 

This study introduces interregional mobility as a spatial network of contagion into the standard 

SEIR model. The basic assumptions are those of the above-mentioned baseline setting. As an 

additional assumption, interregional mobility causes geographical infection expansion through 
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person-to-person contact. 

Individuals are assumed to be exposed to infection risk only in the region they occupy in 

the daytime. For example, suppose that an individual lives in one region and commutes to 

another region during the daytime. This interregional mobility provides two possible 

transmission channels: transfer of the disease from the region occupied by the commuting 

individual to the residential region and spread of the disease from the residential region to the 

region occupied by the commuting individual. Thus, interregional mobility spreads the 

infection disease across spatial domains. 

The interregional mobility can be modeled by spatial network analysis. Let 𝝅𝝅(𝑡𝑡) denote 

the OD probability matrix across regions on date 𝑡𝑡: 

𝝅𝝅(𝑡𝑡) =

⎝

⎛

𝜋𝜋1,1(𝑡𝑡) 𝜋𝜋1,2(𝑡𝑡) ⋯ 𝜋𝜋1𝑚𝑚(𝑡𝑡)
𝜋𝜋2,1(𝑡𝑡) 𝜋𝜋2,2(𝑡𝑡) ⋯ 𝜋𝜋2𝑚𝑚(𝑡𝑡)

⋮ ⋮ ⋱ ⋮
𝜋𝜋𝑚𝑚1(𝑡𝑡) 𝜋𝜋𝑚𝑚2(𝑡𝑡) ⋯ 𝜋𝜋𝑚𝑚𝑚𝑚(𝑡𝑡)⎠

⎞, (2) 

where 𝜋𝜋𝑖𝑖𝑖𝑖(𝑡𝑡) represents the individual’s probability of traveling from region 𝑖𝑖 to region 𝑗𝑗 on 

date 𝑡𝑡. The elements of 𝝅𝝅(𝑡𝑡) along a row must sum to one by the definition of probability. 

To simplify the calculation, we assume that this probability matrix is independent of the 

infection conditions over time (i.e., is not endogenous). However, the model admits exogenous 

seasonal variations or NPIs such as interregional mobility restriction. 

   In terms of the OD matrix, we can calculate the expected mobility flow from region 𝑖𝑖 to 

region 𝑗𝑗 and the expected daytime population in each region. The mobility flow from region 

𝑖𝑖 to region 𝑗𝑗 is calculated as 

𝑁𝑁𝑖𝑖𝑖𝑖(𝑡𝑡) = 𝜋𝜋𝑖𝑖𝑖𝑖(𝑡𝑡)𝑁𝑁𝑖𝑖 . (3) 

The expected total population in the daytime in region 𝑖𝑖 is calculated as 

𝑁𝑁�𝑖𝑖(𝑡𝑡) = �𝑁𝑁𝑘𝑘𝑘𝑘(𝑡𝑡)
𝑚𝑚

𝑘𝑘=1

. (4) 

Similarly, the expected mobility flows of the susceptible, exposed, infectious, and recovered 

individuals are respectively expressed as 𝑆𝑆𝑖𝑖𝑖𝑖(𝑡𝑡) = 𝜋𝜋𝑖𝑖𝑖𝑖(𝑡𝑡)𝑆𝑆𝑖𝑖(𝑡𝑡) , 𝐸𝐸𝑖𝑖𝑖𝑖(𝑡𝑡) = 𝜋𝜋𝑖𝑖𝑖𝑖(𝑡𝑡)𝐸𝐸𝑖𝑖(𝑡𝑡) , 

𝐼𝐼𝑖𝑖𝑖𝑖(𝑡𝑡) =  𝜋𝜋𝑖𝑖𝑖𝑖(𝑡𝑡)𝐼𝐼𝑖𝑖(𝑡𝑡), and 𝑅𝑅𝑖𝑖𝑖𝑖(𝑡𝑡) =  𝜋𝜋𝑖𝑖𝑖𝑖(𝑡𝑡)𝑅𝑅𝑖𝑖(𝑡𝑡). During the daytime, the expected numbers 

of susceptible, exposed, infectious, and recovered individuals are respectively expressed as 
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𝑆̃𝑆𝑖𝑖(𝑡𝑡) = ∑ 𝑆𝑆𝑘𝑘𝑘𝑘(𝑡𝑡)𝑚𝑚
𝑘𝑘=1 ,𝐸𝐸�𝑖𝑖(𝑡𝑡) = ∑ 𝐸𝐸𝑘𝑘𝑘𝑘(𝑡𝑡),𝑚𝑚

𝑘𝑘=1   𝐼𝐼𝑖𝑖(𝑡𝑡) =  ∑ 𝐼𝐼𝑘𝑘𝑘𝑘(𝑡𝑡)𝑚𝑚
𝑘𝑘=1 ,  and 𝑅𝑅�𝑖𝑖(𝑡𝑡) =  ∑ 𝑅𝑅𝑘𝑘𝑘𝑘(𝑡𝑡)𝑚𝑚

𝑘𝑘=1  . 

Note that the OD probability matrix is assumed to be common between the susceptible, 

exposed, infectious, and recovered individuals. 

   Importantly, the spatial distribution of infectious individuals in the daytime affects the 

infection risk in each region. During nighttime, the infectious individuals return to their 

residential regions. Therefore, we count cases of the infection within the residential regions. 

When residents in region 𝑖𝑖 are exposed to heterogeneous infection risk in each region that 

they occupy during the daytime, the infection dynamics in region 𝑖𝑖 is given by 

d𝑆𝑆𝑖𝑖(𝑡𝑡)
d𝑡𝑡

= �
d𝑆𝑆𝑖𝑖𝑖𝑖(𝑡𝑡)

d𝑡𝑡

𝑚𝑚

𝑘𝑘=1

 , (5) 

where d𝑆𝑆𝑖𝑖𝑖𝑖(𝑡𝑡)/d𝑡𝑡  represents the transition that susceptible individuals residing in 

region 𝑖𝑖 and staying in region 𝑗𝑗 during the daytime become infected, and the sum of 

them in terms of region 𝑗𝑗 represents the transition in the residential region 𝑖𝑖. 

Consider residents in region 𝑖𝑖 who remain in region 𝑖𝑖. The infection dynamics is expressed 

as follows: 

d𝑆𝑆𝑖𝑖𝑖𝑖(𝑡𝑡)
d𝑡𝑡

= −𝛽𝛽
𝐼𝐼𝑖𝑖(𝑡𝑡)
𝑁𝑁�𝑖𝑖(𝑡𝑡)

𝑆𝑆𝑖𝑖𝑖𝑖(𝑡𝑡), (6) 

where the force of infection 𝛽𝛽𝐼𝐼𝑖𝑖(𝑡𝑡)/𝑁𝑁�𝑖𝑖(𝑡𝑡) depends on the number of infectious individuals and 

population in region 𝑖𝑖 in the daytime. The infection dynamics for individuals who reside in 

region 𝑖𝑖 and stay in region 𝑗𝑗 in the daytime is expressed as 

d𝑆𝑆𝑖𝑖𝑖𝑖(𝑡𝑡)
d𝑡𝑡

= −𝛽𝛽
𝐼𝐼𝑗𝑗(𝑡𝑡)
𝑁𝑁�𝑗𝑗(𝑡𝑡)

𝑆𝑆𝑖𝑖𝑖𝑖(𝑡𝑡), (7) 

where the force of infection 𝛽𝛽𝐼𝐼𝑗𝑗(𝑡𝑡)/𝑁𝑁�𝑗𝑗(𝑡𝑡) depends on the number of infectious individuals and 

population in region 𝑗𝑗  in the daytime. Thus, residents in region 𝑖𝑖  are exposed to 

heterogeneous infection risks. 

The overall transmission of infection in region 𝑖𝑖 is expressed as the sum of the transmission 

of infection in terms of each outflow, which is given by 
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d𝑆𝑆𝑖𝑖(𝑡𝑡)
d𝑡𝑡

= −𝛽𝛽�
𝐼𝐼𝑘𝑘(𝑡𝑡)
𝑁𝑁�𝑘𝑘(𝑡𝑡)

𝑆𝑆𝑖𝑖𝑖𝑖(𝑡𝑡)
𝑚𝑚

𝑘𝑘=1

. (8) 

Finally, the dynamic system of equations of the spatial SEIR model with interregional 

mobility is given by 

d𝑆𝑆𝑖𝑖(𝑡𝑡)
d𝑡𝑡

= −𝛽𝛽�
𝐼𝐼𝑘𝑘(𝑡𝑡)
𝑁𝑁�𝑘𝑘(𝑡𝑡)

𝑆𝑆𝑖𝑖𝑖𝑖(𝑡𝑡)
𝑚𝑚

𝑘𝑘=1

, 

d𝐸𝐸𝑖𝑖(𝑡𝑡)
d𝑡𝑡

= 𝛽𝛽�
𝐼𝐼𝑘𝑘(𝑡𝑡)
𝑁𝑁�𝑘𝑘(𝑡𝑡)

𝑆𝑆𝑖𝑖𝑖𝑖(𝑡𝑡)
𝑚𝑚

𝑘𝑘=1

− 𝜀𝜀𝐸𝐸𝑖𝑖(𝑡𝑡), 

d𝐼𝐼𝑖𝑖(𝑡𝑡)
d𝑡𝑡

= 𝜀𝜀𝐸𝐸𝑖𝑖(𝑡𝑡) − 𝛾𝛾𝐼𝐼𝑖𝑖(𝑡𝑡), 

d𝑅𝑅𝑖𝑖(𝑡𝑡)
d𝑡𝑡

= 𝛾𝛾𝐼𝐼𝑖𝑖(𝑡𝑡), 

𝑆𝑆𝑖𝑖(𝑡𝑡) + 𝐸𝐸𝑖𝑖(𝑡𝑡) + 𝐼𝐼𝑖𝑖(𝑡𝑡) + 𝑅𝑅𝑖𝑖(𝑡𝑡) = 𝑁𝑁𝑖𝑖 , 

�𝑁𝑁𝑘𝑘

𝑚𝑚

𝑘𝑘=1

= 𝑁𝑁. 

(9) 

When the interregional mobility is restricted, the diagonal and off-diagonal elements of the 

OD matrix 𝝅𝝅(𝑡𝑡)  take values 1 and 0, respectively. Under this assumption, we see that 

𝑁𝑁𝑖𝑖𝑖𝑖(𝑡𝑡) = 𝑆𝑆𝑖𝑖𝑖𝑖(𝑡𝑡) = 𝐸𝐸𝑖𝑖𝑖𝑖(𝑡𝑡) = 𝐼𝐼𝑖𝑖𝑖𝑖(𝑡𝑡) = 𝑅𝑅𝑖𝑖𝑖𝑖(𝑡𝑡) = 0  for all 𝑗𝑗(≠ 𝑖𝑖)  and that 𝑁𝑁�𝑖𝑖(𝑡𝑡) = 𝑁𝑁𝑖𝑖(𝑡𝑡) , 

𝑆̃𝑆𝑖𝑖(𝑡𝑡) = 𝑆𝑆𝑖𝑖(𝑡𝑡), 𝐸𝐸�𝑖𝑖(𝑡𝑡) = 𝐸𝐸𝑖𝑖(𝑡𝑡), 𝐼𝐼𝑖𝑖(𝑡𝑡) = 𝐼𝐼𝑖𝑖(𝑡𝑡), and 𝑅𝑅�𝑖𝑖(𝑡𝑡) = 𝑅𝑅𝑖𝑖(𝑡𝑡). That is, the spatial SEIR 

model with interregional mobility reduces to the baseline SEIR model. The developed spatial 

SEIR model with interregional mobility can thus be viewed as a generalized version of the 

SEIR model. 

2.3. Simulation Setting 

The study objective was to evaluate how interregional mobility restrictions arrest the spatial 

spread of the COVID-19 infection. For this purpose, we compared the simulation results of the 

spatial SEIR model with and without interregional mobility. The difference between the two 

sets of results revealed the impact of interregional mobility on the spread of COVID-19 

infection. 
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To uncover the condition under which restricting the interregional mobility 

effectively prevents spatial infection spread, we also considered another type of NPI 

implemented. The degree of the NPIs (scaling factor of transmission) is defined as 𝛼𝛼(𝑡𝑡) ∈

(0, 1), and the time-varying transmission rate is given by 𝛽𝛽(𝑡𝑡) = 𝛼𝛼(𝑡𝑡)𝛽𝛽. Note that we 

do not consider heterogeneous degree of the NPIs in each region, because we focus only on how 

the heterogeneous contact rates through the interregional mobility affect the spatial infection 

expansion. 

Table 1 presents the parameters settings of the simulation analysis. We assume that average 

incubation and infectious periods ℓ𝜀𝜀  and ℓ𝛾𝛾  were assumed as 5 days and 10 days, 

respectively.2,33–35, The infectiousness probability of an exposed individual was given as 𝜀𝜀 =

1/ℓ𝜀𝜀 , and the recovery probability of an infected individual was given by 𝛾𝛾 = 1/ℓ𝛾𝛾 . The 

transmission rate was determined as 𝛽𝛽 = 𝑅𝑅0𝛾𝛾 based on the standard SEIR model. The basic 

reproduction number ℛ0 was set to 2.6,33 close to that obtained by other studies in Japan.36,37 

These parameter settings were common to all simulation scenarios except the intervention 

degree 𝛼𝛼(𝑡𝑡).  

In this study, the degree of NPIs was exogenously given by the parameter 𝛼𝛼(𝑡𝑡) as a future 

policy target parameter, and two case scenarios were simulated: modest convergence, 

and worsening cases. Figure 1 shows the intervention degree in both scenarios. 

Although the values were arbitrarily set for future scenarios, we attempted to predict 

their potential ranges from the estimated effective reproduction numbers.38,31 For 

example, when declaring a state of emergency on April 7 of 2020, the Government requested 

that person-to-person contact be reduced by 70% at least, meaning that the intervention degree 

in Figure 1 was 0.3. For the basic reproduction number ℛ0 in the baseline SEIR model, the 

intervention degree must be lower than 1/ℛ0 in the convergence scenario (i.e., the effective 

reproduction number must be lower than 1), and 1/ℛ0  or higher in most months of the 

worsening case scenario. 

The simulation was started on November 4 of 2020, the approximate date before the onset 

of the third wave of the pandemic. In the Supplemental Material, we provide additional 

simulation results. As a robustness check, we also evaluated how the starting date influenced 

the simulation results (e.g., April 7 of 2020 and August 17 of 2020). In addition, we evaluated 

the effect of the interregional mobility restriction only for Tokyo. 
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2.4. Data 

Positive COVID-19 cases in each prefecture of Japan are reported by the prefectural 

government and the Ministry of Health, Labour and Welfare (MHLW). This study collected 

the daily and cumulative numbers of positive tests reported by each prefectural government 

until November 25 of 2020. The slight differences between the numbers reported by the 

prefectural governments and the MHLW did not affect the qualitative results. 

Figure 2 is a snapshot of the geographical distribution of the numbers of positive cases on 

August 17 of 2020 and November 10 of 2020. The COVID-19 infection numbers were highest 

in Tokyo (161 and 293 patients testing positive, respectively), followed by Osaka. Although the 

infection tended to expand in prefectures with large cities, such as Tokyo, Osaka, Nagoya, 

Sapporo, Yokohama, and Saitama, other prefectures occasionally experienced a sudden rise in 

infection numbers. 

Considering the observed cumulative number of positive patients and the average number 

Parameters Explanation Value References 

ℛ0 Basic reproduction number 2.6 36,38 

ℓ𝜀𝜀 Average incubation period 5 days 2,31,33–35 

ℓ𝛾𝛾 Average infection period 10 days 2,33 

 

Table 1.  Parameter settings in the simulation. These parameter settings are common to 

each scenario. 
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of days in the incubation and infectious periods (ℓ𝜀𝜀 and ℓ𝛾𝛾, respectively), the variables in 

the SEIR model were constructed as follows:  

𝑅𝑅𝑖𝑖(𝑡𝑡) = 𝑃𝑃𝑖𝑖�𝑡𝑡 − ℓ𝛾𝛾�, 

𝐼𝐼𝑖𝑖(𝑡𝑡) = 𝑃𝑃𝑖𝑖(𝑡𝑡) − 𝑅𝑅𝑖𝑖(𝑡𝑡), 

𝐸𝐸𝑖𝑖(𝑡𝑡) = 𝑃𝑃𝑖𝑖(𝑡𝑡 + ℓ𝜀𝜀) − 𝑃𝑃𝑖𝑖(𝑡𝑡), 

𝑆𝑆𝑖𝑖(𝑡𝑡) = 𝑁𝑁𝑖𝑖 − 𝐸𝐸𝑖𝑖(𝑡𝑡) − 𝐼𝐼𝑖𝑖(𝑡𝑡) − 𝑅𝑅𝑖𝑖(𝑡𝑡) 

(10) 

where 𝑃𝑃𝑖𝑖(𝑡𝑡) represents the cumulative number of positive tests reported in prefecture 𝑖𝑖 at 

date 𝑡𝑡. The total population in each prefecture 𝑖𝑖 was based on October 2019 data and was 

fixed over time (i.e., no migration was assumed across prefectures). 

   These variables were calculated from the observed data before the simulation start 

date, and were predicted by the spatial SEIR model after the simulation start date. 

The theoretical part of the model was based on the probabilistic mobility of individuals, 

but the OD probability matrix in the empirical part was estimated from the observed data on 

interregional mobility, which were derived from the locational information of mobile phone 
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users. The Regional Economy and Society Analyzing System (RESAS), a web application 

developed by the Headquarters for Overcoming Population Decline and Vitalizing Local 

Economy in Japan at the Prime Minister's Office, was released on April 21 of 2015.39 The 

RESAS app visualizes many types of data in Japan, including a dynamic map of the inter-

municipal human flows (the From–To Analysis) based on the Mobile Spatial Statistics of NTT 

DOCOMO.40 The detailed information of inter-municipal flows are available by gender, age, 

year, month, day of the week (weekdays and weekends), and time of day (4 am, 10 am, 2 pm, 

8 pm).  

This study applied the monthly data of interregional flows from September of 2015 to 

August of 2016 by day of week (weekday or weekend). Although the interregional flow data is 

visualized on the RESAS app until 2020, the application programming interface can download 

the original data only within a restricted period (from September of 2015 to August of 2016). 

The daytime population in each prefecture was estimated from the inter-municipal flows 

observed at 2 pm. The inter-municipal flows were aggregated into inter-prefectural flows to 

match the observational unit of the COVID-19 infection data. In each scenario, the daily 

pattern of interregional mobility from September 2015 to August 2016 was assumed from the 

start date of the simulation to December 31 of 2023; that is, the same mobility pattern was 

repeated on the same day of each year. 

From the data, we calculated the share of inter-prefectural mobility that matched the 

probability of interregional mobility. Let 𝑪𝑪(𝑡𝑡) denote the OD matrix across the 47 prefectures 

on date 𝑡𝑡: 

𝑪𝑪(𝑡𝑡) =

⎝

⎛

𝑐𝑐1,1(𝑡𝑡) 𝑐𝑐1,2(𝑡𝑡) ⋯ 𝑐𝑐1,47(𝑡𝑡)
𝑐𝑐2,1(𝑡𝑡) 𝑐𝑐2,2(𝑡𝑡) ⋯ 𝑐𝑐2,47(𝑡𝑡)
⋮ ⋮ ⋱ ⋮

𝑐𝑐47,1(𝑡𝑡) 𝑐𝑐47,2(𝑡𝑡) ⋯ 𝑐𝑐47,47(𝑡𝑡)⎠

⎞, (11) 

where 𝑐𝑐𝑖𝑖𝑖𝑖(𝑡𝑡)  represents the mobility flow (i.e., number of people) from prefecture 𝑖𝑖  to 

prefecture 𝑗𝑗 on date 𝑡𝑡. This OD matrix was row-standardized to express the share as follows: 

𝑾𝑾(𝑡𝑡) =

⎝

⎛

𝑤𝑤1,1(𝑡𝑡) 𝑤𝑤1,2(𝑡𝑡) ⋯ 𝑤𝑤1,47(𝑡𝑡)
𝑤𝑤2,1(𝑡𝑡) 𝑤𝑤2,2(𝑡𝑡) ⋯ 𝑤𝑤2,47(𝑡𝑡)

⋮ ⋮ ⋱ ⋮
𝑤𝑤47,1(𝑡𝑡) 𝑤𝑤47,2(𝑡𝑡) ⋯ 𝑤𝑤47,47(𝑡𝑡)⎠

⎞, (12) 
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where 𝑤𝑤𝑖𝑖𝑖𝑖(𝑡𝑡) represents the share of residents in prefecture 𝑖𝑖 who were staying in prefecture 

𝑗𝑗  on date 𝑡𝑡 . The row-standardization of 𝑪𝑪(𝑡𝑡)  gives the share of inter-prefectural flows as 

follows: 

𝑤𝑤𝑖𝑖𝑖𝑖(𝑡𝑡) =
𝑐𝑐𝑖𝑖𝑖𝑖(𝑡𝑡)

∑ 𝑐𝑐𝑖𝑖𝑖𝑖(𝑡𝑡)47
𝑘𝑘=1  

. (13) 

This weight matrix corresponds to the probabilistic OD matrix in the theoretical model.  

   Figure 3 shows the inter-prefectural OD matrices at 2 pm on weekdays and weekends in 

April of 2016. The color strengths in the tile plots represent the flow share. Panel (a) shows 

that most of the residents remained in their home prefectures. Panel (b) focuses on the OD 

matrix in the Greater Tokyo area (Saitama, Chiba, Tokyo, and Kanagawa). More than 10 

percent of the residents in the neighboring prefectures of Tokyo were in Tokyo at 2 pm on the 

weekdays of April 2016, but residents tended to remain in their home prefectures on weekends. 

This mobility trend affected the inter- and intra-prefectural spread of the infection in the 

Greater Tokyo area. Panels (b) of Figure 3 shows the OD matrices in the Greater Osaka areas. 

Although the inflows into Osaka from neighboring prefectures were smaller than in the Greater 

Tokyo area, Osaka also attracted people from neighboring prefectures. 

   Figure 4 shows the ratio of daytime and nighttime populations by day of the week 

(weekdays versus weekends). As shown in Panel (a), people residing in the neighboring 

prefectures of Tokyo and Osaka tended to concentrate in Tokyo and Osaka, respectively, during 

the daytime. However, Panel (b) of Figure 4 shows that the spatial distribution of the 

population diverged across the country on weekends. From the interregional mobility data 

based on the locational information of mobile phone users, we could precisely predict the 

spatial spread of infection through interregional commuting and travel on weekends, and the 

seasonal trend of the interregional mobility.  

3. Results 

The simulations in this paper predicted the numbers of infectious individuals. All estimation 

results are available on the web application.  

Figure 5 shows the simulation results in the modest convergence scenario. The simulated 

numbers of infectious individuals from the spatial SEIR model with and without interregional 

mobility (red and green lines, respectively), are compared with the observed number of 
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infectious individuals (blue line). 

The gap between the red and green lines captures the influence of interregional mobility on 

the spatial infection spread of COVID-19. This gap tended to be large in rural areas with lower 

numbers of infectious individuals at the starting date of the simulation, such as Iwate, Akita, 

Yamagata, Fukushima, Ibaraki, Tochigi, Gunma, Niigata, Toyama, Fukui, Nagano, Gifu, Mie, 
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Wakayama, Shimane, Hiroshima, Yamaguchi, Tokushima, Kagawa, Ehime, Kochi, Nagasaki, 

Oita, and Miyazaki. When interregional mobility was included, the numbers of infectious 

individuals predicted by the spatial SEIR model were more than twice those predicted without 

interregional mobility, implying that interregional mobility caused the infection expiation in 

those prefectures. 

In prefectures with large cities, such as Tokyo, Aichi, and Osaka, the spatial SEIR model 

with interregional mobility predicted lower numbers of infectious individuals than the model 

without interregional mobility. To understand why the interregional mobility generated these 

results, we calculated the ratios of the daytime and nighttime forces of infection in the Greater 

Tokyo, Nagoya, and Osaka areas.  

Figure 6 plots the obtained ratios in the modest convergence case scenarios. Note that the 

ratio becomes one in the spatial SEIR model without interregional mobility, because the spatial 

population distributions during the daytime and nighttime are identical. As shown in Figure 

6, the ratios in Tokyo, Aichi, and Osaka were lower than one and gradually converged to one. 
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Although large cities generally attract more external people than smaller cities and towns, the 

force of infection during the daytime decreased because the influx from neighboring prefectures 

contained susceptible individuals. The outflux of infectious individuals from Tokyo, Aichi, and 
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Osaka also decreased the daytime force of infection in those cities. That is, the ratios in the 

neighboring prefectures of Tokyo, Aichi, and Osaka were higher than one and gradually 

converged to one. Therefore, susceptible residents in Tokyo, Aichi, and Osaka were exposed to 

lower infection risk in the daytime than in the nighttime. Continuous interregional mobility 
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gradually equalized the daytime and nighttime forces of infections within the Greater Tokyo, 

Nagoya, and Osaka areas. 

Importantly, the national total numbers of infectious individuals were almost identical in 

the SEIR models with and without interregional mobility although those simulated from the 

SEIR without interregional mobility were always lower than those simulated from the SEIR 

with interregional mobility. In other words, restricting the interregional mobility slowed the 

speed of the infection spread but did not effectively reduce the infection expansion in the 

modest convergence scenario. 

Figure 7 shows the simulation results in the worsening case scenario. Relative to the modest 

convergence scenario, restricting the interregional mobility widened the gap between the 

national total numbers of infectious individuals predicted by the SEIR models in the long term. 

This finding implies that restricting the interregional mobility lowered the growth rate of 

numbers of infectious individuals when the effective reproduction number exceeded one. 

Another important result was that interregional mobility accelerated the expansion of the 

COVID-19 infection in the short term in the rural areas, such as Iwate, Akita, Yamagata, 

Fukushima, Ibaraki, Tochigi, Gunma, Niigata, Toyama, Fukui, Nagano, Gifu, Mie, Wakayama, 

Shimane, Hiroshima, Yamaguchi, Tokushima, Kagawa, Ehime, Kochi, Nagasaki, Oita, and 
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Miyazaki. On the other hand, there were prefectures that had relatively small gaps in number 

of infectious individuals between the SEIR models with and without interregional mobility, 

such as, Aomori, Okayama, Kumamoto, and Kagoshima. 
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4. Discussion 

Our spatial SEIR model with interregional mobility revealed the effect of interregional mobility 

on the geographical infection spread of COVID-19. The simulation relies on the past 
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interregional mobility data obtained from the locational information of mobile phone users. By 

analyzing these data, we could evaluate the differences in interregional mobility by season, day 

of the week, and period of the day. The government of Japan has recognized the effectiveness 

of high-frequency and real-time mobility data in mitigating the COVID-19 pandemic.41 In this 

study, the interregional mobility data were constructed into a daily OD matrix, showing the 

applicability of recent geospatial information technology in epidemic models.  

From the simulation results of both scenarios, we can understand two important aspects of 

control measures. The first aspect involves the spatial spread of COVID-19. As expected, 

restricting the interregional mobility prevented the wide geographical spreading of the infection. 

This control measure is especially important for rural regions with scarce healthcare resources. 

Consistent with our simulation results, college student travel during the spring break has 

contributed to local infection transmission in the U.S.21 

Surprisingly, in prefectures with large cities that attract outside workers (such as Tokyo 

and Osaka), the number of infections increased after restricting the interregional mobility. 

Although restricting mobility has reduced the total number of COVID-19 cases per capita in 

some U.S. cities,20 our simulation results from the spatial SEIR model suggest that the 

interregional mobility restriction has heterogeneous impacts on the infection expansion across 

regions. For example, an influx of uninfected persons from outside, and an outflux of infectious 

persons from regions with many infections, such as Tokyo and Osaka, will reduce the infection 

risk in the daytime in those regions. Therefore, restricting the interregional mobility without 

restricting intra-regional mobility will result in an increase in the infection risk to residents in 

large cities. To prevent further expansion of the infection in regions with many infections, 

additional strong NPIs should accompany the restrictions on interregional mobility. For 

example, contact restriction may be an effective control measure.17 

The second aspect of control measures is whether the interregional mobility restriction can 

reduce the national total number of infections. Distinguishing between the short- and long 

term control measures is important, and the fundamental goal should be toward reducing the 

overall epidemic size.18 

According to our simulation results, restricting the interregional mobility had a limited 

effect on reducing the national total number of infectious individuals. Imposing the mobility 

restriction cut the growth rate in national total number of infectious individuals only when the 

effective reproduction number was one or higher. Moreover, it was pointed out that regional 

lockdowns effectively reduced the overall epidemic size only when the transmission rate 
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remained persistently low.18 These results imply that the efficacy of imposing the mobility 

restriction (in terms of reducing the overall epidemic size) is very sensitive to the timing of the 

restriction. In the Supplemental Material, we also evaluated other case scenarios (e.g., the 

effects of the timing of the mobility restriction and regional lockdown in Tokyo). 

In conclusion, the interregional mobility restriction dominantly affected the spatial pattern 

and the speed of the infection spread and played a limited role in reducing the national total 

number of infections. The most important implication of restricting the interregional mobility 

is the avoidance of an epidemic peak that overwhelms the existing healthcare services, 

especially in rural regions where healthcare resources are typically scarce in Japan.42 In that 

sense, the mobility restriction is an effective control measure. 
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Online Appendix 3

Online Appendix A.

COVID-19 Simulator

This study developed a Shiny application to visualize simulated numbers of the susceptible, ex-

posed, infectious, and recovered individuals in each case scenario. All simulation results are provided

on the web application.

(URL: https://keisuke-kondo.shinyapps.io/covid19-simulator-japan/).

Figure A.1 shows the top page of the web app. Users can select one of the six scenarios on the

side bar. In the main panel, users can access original data and simulation results. For example,

Figure A.2 shows the inter-prefectural flows on the web application (Click Spatial Network Data on

the Visualization menu). The width of the line and the strength of the line color represent the size

of flow. The map shows the share of people residing in each prefecture who stayed in Tokyo at 2 pm

on weekday in April 2016. For example, 15–20 % of people residing in Saitama stayed in Tokyo at 2

pm on weekday in April 2016. All bilateral flows across the 47 prefectures are visualized on the web

application.

[Figures A.1 and A.2]
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Figure A.1. COVID-19 Simulator

URL: https://keisuke-kondo.shinyapps.io/covid19-simulator-japan/
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Figure A.2. Interregional Mobility across the 47 Prefectures

Note: See caption of Figure 4 for details. The map shows the share of people residing in each prefecture
who stayed in Tokyo at 2 pm on weekday in April 2016. For example, 15–20 % of people residing in
Saitama stayed in Tokyo at 2 pm on weekday in April 2016.
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Online Appendix B.

Case 1: Rapid covergence case scenario at the early stage with time-

constant transmission rate from April 7 of 2020

Figure B.1 shows the simulation results in the rapid convergence case scenario, which was originally

considered at the early stage before the declaration of the state of emergency on April 7 of 2020.

Table B.1 presents the specific values of intervention degree α(ts) used in the simulation. The

transmission rate is time-constant so that the basic reproduction number is 0.75. The government

of Japan requested at least to prevent the person-to-person contact by 70 % when declaring the

state of emergency. In this situation, the basic reproduction number was assumed to be 2.5, and the

government’s request meant the effective reproduction number was 0.75.

[Table B.1 and Figure B.1]
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Table B.1. Parameter Setting of Intervention Degree in Case Scenario 1

Month

Year 1 2 3 4 5 6 7 8 9 10 11 12

Case 1 (Starting date of simulation: April 7 of 2020)

2020 - - - 0.2885 0.2885 0.2885 0.2885 0.2885 0.2885 0.2885 0.2885 0.2885
2021 0.2885 0.2885 0.2885 0.2885 0.2885 0.2885 0.2885 0.2885 0.2885 0.2885 0.2885 0.2885
2022 0.2885 0.2885 0.2885 0.2885 0.2885 0.2885 0.2885 0.2885 0.2885 0.2885 0.2885 0.2885
2023 0.2885 0.2885 0.2885 0.2885 0.2885 0.2885 0.2885 0.2885 0.2885 0.2885 0.2885 0.2885

Note: See caption of Table 2 for details.



Online Appendix 8

2020

04−07

0

5,000

10,000

2020
Jan

2021
Jan

2022
Jan

2023
Jan

2024
Jan

N
um

be
r 

of
 In

fe
ct

io
us

00 National Total
2020

04−07

0

400

800

1,200

2020
Jan

2021
Jan

2022
Jan

2023
Jan

2024
Jan

N
um

be
r 

of
 In

fe
ct

io
us

01 Hokkaido
2020

04−07

0

50

100

2020
Jan

2021
Jan

2022
Jan

2023
Jan

2024
Jan

N
um

be
r 

of
 In

fe
ct

io
us

02 Aomori
2020

04−07

0

3

6

9

2020
Jan

2021
Jan

2022
Jan

2023
Jan

2024
Jan

N
um

be
r 

of
 In

fe
ct

io
us

03 Iwate

2020

04−07

0

50

100

150

200

2020
Jan

2021
Jan

2022
Jan

2023
Jan

2024
Jan

N
um

be
r 

of
 In

fe
ct

io
us

04 Miyagi
2020

04−07

0

5

10

15

20

25

2020
Jan

2021
Jan

2022
Jan

2023
Jan

2024
Jan

N
um

be
r 

of
 In

fe
ct

io
us

05 Akita
2020

04−07

0

10

20

30

40

2020
Jan

2021
Jan

2022
Jan

2023
Jan

2024
Jan

N
um

be
r 

of
 In

fe
ct

io
us

06 Yamagata
2020

04−07

0

20

40

60

80

2020
Jan

2021
Jan

2022
Jan

2023
Jan

2024
Jan

N
um

be
r 

of
 In

fe
ct

io
us

07 Fukushima

2020

04−07

0

30

60

90

120

2020
Jan

2021
Jan

2022
Jan

2023
Jan

2024
Jan

N
um

be
r 

of
 In

fe
ct

io
us

08 Ibaraki
2020

04−07

0

20

40

60

2020
Jan

2021
Jan

2022
Jan

2023
Jan

2024
Jan

N
um

be
r 

of
 In

fe
ct

io
us

09 Tochigi
2020

04−07

0

50

100

150

2020
Jan

2021
Jan

2022
Jan

2023
Jan

2024
Jan

N
um

be
r 

of
 In

fe
ct

io
us

10 Gunma
2020

04−07

0

200

400

600

2020
Jan

2021
Jan

2022
Jan

2023
Jan

2024
Jan

N
um

be
r 

of
 In

fe
ct

io
us

11 Saitama

2020

04−07

0

200

400

2020
Jan

2021
Jan

2022
Jan

2023
Jan

2024
Jan

N
um

be
r 

of
 In

fe
ct

io
us

12 Chiba
2020

04−07

0

1,000

2,000

3,000

2020
Jan

2021
Jan

2022
Jan

2023
Jan

2024
Jan

N
um

be
r 

of
 In

fe
ct

io
us

13 Tokyo
2020

04−07

0

250

500

750

1,000

2020
Jan

2021
Jan

2022
Jan

2023
Jan

2024
Jan

N
um

be
r 

of
 In

fe
ct

io
us

14 Kanagawa
2020

04−07

0

10

20

30

2020
Jan

2021
Jan

2022
Jan

2023
Jan

2024
Jan

N
um

be
r 

of
 In

fe
ct

io
us

15 Niigata

2020

04−07

0

30

60

90

120

2020
Jan

2021
Jan

2022
Jan

2023
Jan

2024
Jan

N
um

be
r 

of
 In

fe
ct

io
us

16 Toyama
2020

04−07

0

50

100

150

2020
Jan

2021
Jan

2022
Jan

2023
Jan

2024
Jan

N
um

be
r 

of
 In

fe
ct

io
us

17 Ishikawa
2020

04−07

0

20

40

60

2020
Jan

2021
Jan

2022
Jan

2023
Jan

2024
Jan

N
um

be
r 

of
 In

fe
ct

io
us

18 Fukui
2020

04−07

0

10

20

30

40

2020
Jan

2021
Jan

2022
Jan

2023
Jan

2024
Jan

N
um

be
r 

of
 In

fe
ct

io
us

19 Yamanashi

2020

04−07

0

25

50

75

100

2020
Jan

2021
Jan

2022
Jan

2023
Jan

2024
Jan

N
um

be
r 

of
 In

fe
ct

io
us

20 Nagano
2020

04−07

0

50

100

150

2020
Jan

2021
Jan

2022
Jan

2023
Jan

2024
Jan

N
um

be
r 

of
 In

fe
ct

io
us

21 Gifu
2020

04−07

0

50

100

150

2020
Jan

2021
Jan

2022
Jan

2023
Jan

2024
Jan

N
um

be
r 

of
 In

fe
ct

io
us

22 Shizuoka
2020

04−07

0

500

1,000

1,500

2020
Jan

2021
Jan

2022
Jan

2023
Jan

2024
Jan

N
um

be
r 

of
 In

fe
ct

io
us

23 Aichi

Figure B.1. Simulated Number of Infectious Persons by Prefecture in Case Scenario 1

Note: See caption of Figure 4 for details.
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Figure B.1. Simulated Number of Infectious Persons by Prefecture in Case Scenario 1 (Continued)

Note: See caption of Figure 4 for details.
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Online Appendix C.

Case 2: Modest convergence case scenario with time-varying trans-

mission rate from April 7 of 2020

Figure C.1 presents simulation results for the modest convergence case scenario with the time-

varying transmission rate. The starting date of simulation is April 7 of 2020.

Table C.1 presents the specific values of intervention degree α(t) used in the simulation.

[Table C.1 and Figure C.1]
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Table C.1. Parameter Setting of Intervention Degree in Case Scenario 2

Month

Year 1 2 3 4 5 6 7 8 9 10 11 12

Case 2 (Starting date of simulation: April 7, 2020)

2020 - - - 0.56 0.12 0.48 0.76 0.48 0.20 0.44 0.62 0.56
2021 0.40 0.32 0.20 0.46 0.32 0.24 0.48 0.32 0.24 0.46 0.54 0.54
2022 0.40 0.32 0.20 0.46 0.32 0.24 0.48 0.32 0.24 0.46 0.54 0.54
2023 0.40 0.32 0.20 0.46 0.32 0.24 0.48 0.32 0.24 0.46 0.54 0.54

Note: See caption of Table 2 for details.
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Figure C.1. Simulated Number of Infectious Persons by Prefecture in Case Scenario 2

Note: See caption of Figure 4 for details.
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Figure C.1. Simulated Number of Infectious Persons by Prefecture in Case Scenario 2 (Continued)

Note: See caption of Figure 4 for details.
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Online Appendix D.

Case 3: Modest convergence case scenario with time-varying trans-

mission rate from August 17 of 2020

Figure D.1 shows the simulation results in the modest convergence case scenario with the time-

varying transmission rate. The starting date of simulation is August 17 of 2020.

Table D.1 presents the specific values of intervention degree α(t) used in the simulation.

[Table D.1 and D.1]
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Table D.1. Parameter Setting of Intervention Degree in Case Scenario 3

Month

Year 1 2 3 4 5 6 7 8 9 10 11 12

Case 3 (Starting date of simulation: August 17 of 2020)

2020 - - - - - - - 0.48 0.20 0.44 0.62 0.56
2021 0.40 0.32 0.20 0.46 0.32 0.24 0.48 0.32 0.24 0.46 0.54 0.54
2022 0.40 0.32 0.20 0.46 0.32 0.24 0.48 0.32 0.24 0.46 0.54 0.54
2023 0.40 0.32 0.20 0.46 0.32 0.24 0.48 0.32 0.24 0.46 0.54 0.54

Note: See caption of Table 2 for details.
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Figure D.1. Simulated Number of Infectious Persons by Prefecture in Case Scenario 3

Note: See caption of Figure 4 for details.
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Figure D.1. Simulated Number of Infectious Persons by Prefecture in Case Scenario 3 (Continued)

Note: See caption of Figure 4 for details.
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Online Appendix E.

Case 4: Modest convergence case scenario with time-varying trans-

mission rate from November 4 of 2020

Figure E.1 shows the simulation results in the modest convergence case scenario with the time-

varying transmission rate. The starting date of simulation is November 4 of 2020.

Table E.1 presents the specific values of intervention degree α(t) used in the simulation.

[Table E.1 and E.1]
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Table E.1. Parameter Setting of Intervention Degree in Case Scenario 4

Month

Year 1 2 3 4 5 6 7 8 9 10 11 12

Case 4 (Starting date of simulation: November 4 of 2020)

2020 - - - - - - - - - - 0.62 0.56
2021 0.40 0.32 0.20 0.46 0.32 0.24 0.48 0.32 0.24 0.46 0.54 0.54
2022 0.40 0.32 0.20 0.46 0.32 0.24 0.48 0.32 0.24 0.46 0.54 0.54
2023 0.40 0.32 0.20 0.46 0.32 0.24 0.48 0.32 0.24 0.46 0.54 0.54

Note: See caption of Table 2 for details.
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Figure E.1. Simulated Number of Infectious Persons by Prefecture in Case Scenario 4

Note: See caption of Figure 4 for details.
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Figure E.1. Simulated Number of Infectious Persons by Prefecture in Case Scenario 4 (Continued)

Note: See caption of Figure 4 for details.
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Online Appendix F.

Case 5: Worsening case scenario with time-varying transmission rate

from November 4 of 2020

Figure F.1 presents the simulation results in the worsening case scenario with the time-varying

transmission rate. The starting date of simulation is November 4 of 2020.

Table F.1 presents the specific values of intervention degree α(t) used in the simulation.

[Table F.1 and Figure F.1]
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Table F.1. Parameter Setting of Intervention Degree in Case Scenario 5

Month

Year 1 2 3 4 5 6 7 8 9 10 11 12

Case 5 (Starting date of simulation: November 4 of 2020)

2020 - - - - - - - - - - 0.62 0.56
2021 0.50 0.46 0.40 0.34 0.34 0.32 0.40 0.36 0.40 0.44 0.54 0.54
2022 0.50 0.46 0.40 0.34 0.34 0.32 0.40 0.36 0.40 0.44 0.54 0.54
2023 0.50 0.46 0.40 0.34 0.34 0.32 0.40 0.36 0.40 0.44 0.54 0.54

Note: See caption of Table 2 for details.
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Figure F.1. Simulated Number of Infectious Persons by Prefecture in Case Scenario 5

Note: See caption of Figure 4 for details.
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Figure F.1. Simulated Number of Infectious Persons by Prefecture in Case Scenario 5 (Continued)

Note: See caption of Figure 4 for details.
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Online Appendix G.

Case 6: Mobility restriction only for Tokyo and modest convergence

case scenario with time-varying transmission rate from November 4

of 2020

Figure G.1 shows the simulation results under the mobility restriction only for Tokyo in the modest

convergence case scenario with the time-varying transmission rate. The starting date of simulation is

November 4 of 2020.

Table G.1 presents the specific values of intervention degree α(t) used in the simulation.

[Table G.1 and Figure G.1]
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Table G.1. Parameter Setting of Intervention Degree in Case Scenario 6

Month

Year 1 2 3 4 5 6 7 8 9 10 11 12

Case 6 (Starting date of simulation: November 4 of 2020)

2020 - - - - - - - - - - 0.62 0.56
2021 0.50 0.46 0.40 0.34 0.34 0.32 0.40 0.36 0.40 0.44 0.54 0.54
2022 0.50 0.46 0.40 0.34 0.34 0.32 0.40 0.36 0.40 0.44 0.54 0.54
2023 0.50 0.46 0.40 0.34 0.34 0.32 0.40 0.36 0.40 0.44 0.54 0.54

Note: See caption of Figure 4 for details.
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23 Aichi

Figure G.1. Simulated Number of Infectious Persons by Prefecture in Case Scenario 6

Note: Shown are the observed numbers of infectious individuals (blue lines), and the numbers of
infectious individuals simulated by the spatial SEIR model with interregional mobility and with in-
terregional mobility except Tokyo (red and purple lines, respectively). Simulations were started on
November 4 of 2020.



Online Appendix 29

2020

11−04

0

200

400

600

2020
Jan

2021
Jan

2022
Jan

2023
Jan

2024
Jan

N
um

be
r 

of
 In

fe
ct

io
us

24 Mie
2020

11−04

0

200

400

600

2020
Jan

2021
Jan

2022
Jan

2023
Jan

2024
Jan

N
um

be
r 

of
 In

fe
ct

io
us

25 Shiga
2020

11−04

0

400

800

1,200

2020
Jan

2021
Jan

2022
Jan

2023
Jan

2024
Jan

N
um

be
r 

of
 In

fe
ct

io
us

26 Kyoto
2020

11−04

0

1,000

2,000

3,000

4,000

5,000

2020
Jan

2021
Jan

2022
Jan

2023
Jan

2024
Jan

N
um

be
r 

of
 In

fe
ct

io
us

27 Osaka

2020

11−04

0

1,000

2,000

2020
Jan

2021
Jan

2022
Jan

2023
Jan

2024
Jan

N
um

be
r 

of
 In

fe
ct

io
us

28 Hyogo
2020

11−04

0

200

400

600

2020
Jan

2021
Jan

2022
Jan

2023
Jan

2024
Jan

N
um

be
r 

of
 In

fe
ct

io
us

29 Nara
2020

11−04

0

100

200

300

2020
Jan

2021
Jan

2022
Jan

2023
Jan

2024
Jan

N
um

be
r 

of
 In

fe
ct

io
us

30 Wakayama
2020

11−04

0

25

50

75

100

2020
Jan

2021
Jan

2022
Jan

2023
Jan

2024
Jan

N
um

be
r 

of
 In

fe
ct

io
us

31 Tottori

2020

11−04

0

25

50

75

100

2020
Jan

2021
Jan

2022
Jan

2023
Jan

2024
Jan

N
um

be
r 

of
 In

fe
ct

io
us

32 Shimane
2020

11−04

0

200

400

2020
Jan

2021
Jan

2022
Jan

2023
Jan

2024
Jan

N
um

be
r 

of
 In

fe
ct

io
us

33 Okayama
2020

11−04

0

100

200

300

2020
Jan

2021
Jan

2022
Jan

2023
Jan

2024
Jan

N
um

be
r 

of
 In

fe
ct

io
us

34 Hiroshima
2020

11−04

0

50

100

150

2020
Jan

2021
Jan

2022
Jan

2023
Jan

2024
Jan

N
um

be
r 

of
 In

fe
ct

io
us

35 Yamaguchi

2020

11−04

0

25

50

75

2020
Jan

2021
Jan

2022
Jan

2023
Jan

2024
Jan

N
um

be
r 

of
 In

fe
ct

io
us

36 Tokushima
2020

11−04

0

50

100

2020
Jan

2021
Jan

2022
Jan

2023
Jan

2024
Jan

N
um

be
r 

of
 In

fe
ct

io
us

37 Kagawa
2020

11−04

0

50

100

2020
Jan

2021
Jan

2022
Jan

2023
Jan

2024
Jan

N
um

be
r 

of
 In

fe
ct

io
us

38 Ehime
2020

11−04

0

20

40

60

2020
Jan

2021
Jan

2022
Jan

2023
Jan

2024
Jan

N
um

be
r 

of
 In

fe
ct

io
us

39 Kochi

2020

11−04

0

500

1,000

2020
Jan

2021
Jan

2022
Jan

2023
Jan

2024
Jan

N
um

be
r 

of
 In

fe
ct

io
us

40 Fukuoka
2020

11−04

0

25

50

75

100

2020
Jan

2021
Jan

2022
Jan

2023
Jan

2024
Jan

N
um

be
r 

of
 In

fe
ct

io
us

41 Saga
2020

11−04

0

50

100

150

2020
Jan

2021
Jan

2022
Jan

2023
Jan

2024
Jan

N
um

be
r 

of
 In

fe
ct

io
us

42 Nagasaki
2020

11−04

0

100

200

300

2020
Jan

2021
Jan

2022
Jan

2023
Jan

2024
Jan

N
um

be
r 

of
 In

fe
ct

io
us

43 Kumamoto

2020

11−04

0

30

60

90

2020
Jan

2021
Jan

2022
Jan

2023
Jan

2024
Jan

N
um

be
r 

of
 In

fe
ct

io
us

44 Oita
2020

11−04

0

50

100

150

2020
Jan

2021
Jan

2022
Jan

2023
Jan

2024
Jan

N
um

be
r 

of
 In

fe
ct

io
us

45 Miyazaki
2020

11−04

0

100

200

300

2020
Jan

2021
Jan

2022
Jan

2023
Jan

2024
Jan

N
um

be
r 

of
 In

fe
ct

io
us

46 Kagoshima
2020

11−04

0

500

1,000

2020
Jan

2021
Jan

2022
Jan

2023
Jan

2024
Jan

N
um

be
r 

of
 In

fe
ct

io
us

47 Okinawa

Figure G.1. Simulated Number of Infectious Persons by Prefecture in Case Scenario 6 (Continued)

Note: See caption of Figure G.1 for details.
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